Global well-posedness and ill-posedness for the Navier–Stokes equations with the Coriolis force in function spaces of Besov type

Abstract We consider the initial value problems for the Navier–Stokes equations in the rotational framework. We introduce function spaces B ˙ p , q s ( R 3 ) of Besov type, and prove the global in time existence and the uniqueness of the mild solution for small initial data in our space B ˙ 1 , 2 − 1 ( R 3 ) near BMO − 1 ( R 3 ) . Furthermore, we also discuss the ill-posedness for the Navier–Stokes equations with the Coriolis force, which implies the optimality of our function space B ˙ 1 , 2 − 1 ( R 3 ) for the global well-posedness.

[1]  J. Bourgain,et al.  Ill-posedness of the Navier-Stokes equations in a critical space in 3D , 2008, 0807.0882.

[2]  Alex Mahalov,et al.  3D Navier-Stokes and Euler equations with initial data characterized by uniformly large vorticity , 2001 .

[3]  Herbert Koch,et al.  Well-posedness for the Navier–Stokes Equations , 2001 .

[4]  The second iterate for the Navier–Stokes equation , 2008, 0806.4525.

[5]  Hideo Kozono,et al.  Bilinear estimates in homogeneous Triebel‐Lizorkin spaces and the Navier‐Stokes equations , 2004 .

[6]  Y. Giga,et al.  Uniform Local Solvability for the Navier-Stokes Equations with the Coriolis Force , 2005 .

[7]  T. Yoneda,et al.  On dispersive effect of the Coriolis force for the stationary Navier–Stokes equations , 2010, 1007.1181.

[8]  M. Weinstein,et al.  Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation , 1991 .

[9]  T. Iwabuchi Global well-posedness for Keller–Segel system in Besov type spaces , 2011 .

[10]  Y. Giga,et al.  Uniform global solvability of the rotating Navier-Stokes equations for nondecaying initial data , 2008 .

[11]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[12]  Y. Giga,et al.  Navier-Stokes equations in a rotating frame in R3 with initial data nondecreasing at infinity , 2006 .

[13]  Hiroshi Fujita,et al.  On the Navier-Stokes initial value problem. I , 1964 .

[14]  Alex Mahalov,et al.  Regularity and integrability of 3D Euler and Navier–Stokes equations for rotating fluids , 1997 .

[15]  B. Desjardins,et al.  Anisotropy and dispersion in rotating fluids , 2002 .

[16]  Takashi Kato,et al.  StrongLp-solutions of the Navier-Stokes equation inRm, with applications to weak solutions , 1984 .

[17]  H. Kozono,et al.  Semilinear heat equations and the navier-stokes equation with distributions in new function spaces as initial data , 1994 .

[18]  Yoshihiro Shibata,et al.  The Fujita–Kato approach to the Navier–Stokes equations in the rotational framework , 2010 .

[19]  T. Yoneda,et al.  Ill-posedness of the 3D-Navier–Stokes equations in a generalized Besov space near BMO−1 , 2010 .

[20]  J. Bony,et al.  Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .

[21]  T. Yoneda,et al.  Long-time Solvability of the Navier–Stokes Equations in a Rotating Frame with Spatially Almost Periodic Large Data , 2011 .

[22]  Alex Mahalov,et al.  Global regularity of 3D rotating Navier-Stokes equations for resonant domains , 1999, Appl. Math. Lett..

[23]  T. Tao,et al.  Sharp well-posedness and ill-posedness results for a quadratic non-linear Schr , 2005, math/0508210.