Tetranuclear Copper(I) Iodide Complexes: A New Class of X-ray Phosphors.

We report intensive visible light radioluminescence upon X-ray irradiation of archetypal tetranuclear copper(I) iodide complexes containing triphenylphosphine or pyridine ligands in the solid state. These properties, attractive for the design of X-ray responsive materials, can be attributed to the heavy {Cu4I4} cubane-like core, the absence of oxygen quenching of the emissive triplet states, and the high photoluminescence quantum yields. Radioluminescence originates from the same emissive triplet states as those produced by ultraviolet excitation as confirmed by the observed radioluminescence thermochromism. The radioluminescence properties are also preserved after incorporation of these complexes into polystyrene films, making them appealing for the development of plastic scintillators.

[1]  L. P. Ravaro,et al.  The polynuclear complex Cu4I4py4 loaded in mesoporous silica: photophysics, theoretical investigation, and highly sensitive oxygen sensing application. , 2016, Dalton transactions.

[2]  P. Kubát,et al.  X-ray Inducible Luminescence and Singlet Oxygen Sensitization by an Octahedral Molybdenum Cluster Compound: A New Class of Nanoscintillators. , 2016, Inorganic chemistry.

[3]  Ahmed H. Elmenoufy,et al.  Highly Efficient FRET System Capable of Deep Photodynamic Therapy Established on X-ray Excited Mesoporous LaF3:Tb Scintillating Nanoparticles. , 2015, ACS applied materials & interfaces.

[4]  Feng Liu,et al.  Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment. , 2015, Nano letters.

[5]  Pavel Kubat,et al.  Luminescent hydrogel particles prepared by self-assembly of β-cyclodextrin polymer and octahedral molybdenum cluster complexes. , 2014, Inorganic chemistry.

[6]  F. Taulelle,et al.  Polymorphic copper iodide clusters: insights into the mechanochromic luminescence properties. , 2014, Journal of the American Chemical Society.

[7]  D. Braga,et al.  Phosphorescence quantum yield enhanced by intermolecular hydrogen bonds in Cu4I4 clusters in the solid state. , 2014, Dalton transactions.

[8]  V. Petříček,et al.  Crystallographic Computing System JANA2006: General features , 2014 .

[9]  O. Efremova,et al.  A highly emissive inorganic hexamolybdenum cluster complex as a handy precursor for the preparation of new luminescent materials. , 2014, Dalton transactions.

[10]  Lei Xing,et al.  Hard X-ray-induced optical luminescence via biomolecule-directed metal clusters. , 2014, Chemical communications.

[11]  H. Patterson,et al.  Structure, Dynamics, and Photophysics in the Copper(I) Iodide–Tetrahydrothiophene System , 2014 .

[12]  Jianping Ma,et al.  Cu(I)-MOF: naked-eye colorimetric sensor for humidity and formaldehyde in single-crystal-to-single-crystal fashion. , 2014, Chemical communications.

[13]  Muriel Barberi-Heyob,et al.  X-ray-Induced singlet oxygen activation with nanoscintillator-coupled porphyrins , 2013 .

[14]  T. Aubert,et al.  Extended Investigations on Luminescent Cs2[Mo6Br14]@SiO2 Nanoparticles: Physico-Structural Characterizations and Toxicity Studies , 2013 .

[15]  Mingyan Wu,et al.  Using cuprophilicity as a multi-responsive chromophore switching color in response to temperature, mechanical force and solvent vapors , 2013 .

[16]  Marcel Fuciman,et al.  A comparative study of the redox and excited state properties of (nBu4N)2[Mo6X14] and (nBu4N)2[Mo6X8(CF3COO)6] (X = Cl, Br, or I). , 2013, Dalton transactions.

[17]  Jun-Hao Wang,et al.  A dynamic, luminescent and entangled MOF as a qualitative sensor for volatile organic solvents and a quantitative monitor for acetonitrile vapour , 2013 .

[18]  Jian Zhang,et al.  Luminescent MTN-type cluster-organic framework with 2.6 nm cages. , 2012, Journal of the American Chemical Society.

[19]  Jeffrey N. Anker,et al.  Magnetic and optical properties of multifunctional core-shell radioluminescence nanoparticles. , 2012, Journal of materials chemistry.

[20]  D. Braga,et al.  Polymorph and isomer conversion of complexes based on CuI and PPh3 easily observed via luminescence. , 2012, Dalton transactions.

[21]  J. Boilot,et al.  Thermochromic luminescence of copper iodide clusters: the case of phosphine ligands. , 2011, Inorganic chemistry.

[22]  K. Brylev,et al.  Highly luminescent complexes [Mo6X8(n-C3F7COO)6]2- (X=Br, I). , 2011, Dalton transactions.

[23]  Y. Ozawa,et al.  Flexibility of cubane-like Cu4I4 framework: temperature dependence of molecular structure and luminescence thermochromism of [Cu4I4(PPh3)4] in two polymorphic crystalline states. , 2010, Chemical communications.

[24]  Thierry Gacoin,et al.  Mechanochromic and thermochromic luminescence of a copper iodide cluster. , 2010, Journal of the American Chemical Society.

[25]  N. Armaroli,et al.  Luminescent complexes beyond the platinum group: the d10 avenue. , 2008, Chemical communications.

[26]  Wei Chen,et al.  Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. , 2006, Journal of nanoscience and nanotechnology.

[27]  Maria Cristina Burla,et al.  SIR2002: the program , 2003 .

[28]  Peter C. Ford,et al.  Photoluminescence Properties of Multinuclear Copper(I) Compounds. , 1999, Chemical reviews.

[29]  P. C. Ford,et al.  Photophysical studies in solution of the tetranuclear copper(I) clusters Cu4I4L4 (L = pyridine or substituted pyridine) , 1991 .

[30]  C. Raston,et al.  Lewis-base adducts of Group 1B metal(I) compounds. Part 16. Synthesis, structure, and solid-state phosphorus-31 nuclear magnetic resonance spectra of some novel [Cu4X4L4](X = halogen, L = N, P base)‘cubane’ clusters , 1985 .

[31]  J. Strähle,et al.  Strukturisomere von Kupfer(I)iodid · Pyridin und ihre Lumineszenzeigenschaften. Darstellung und Kristallstruktur einer neuen Modifikation von Cul · NC5H5 / Structural Isomers of Copper(I) Iodide Pyridine and their Luminescence Properties Synthesis and Crystal Structure of a New Modification of Cul · , 1980 .

[32]  M. Radjaipour,et al.  Kinetik der Lumineszenz-Thermochromie und Zuordnung der Tieftemperaturemission von Pyridino-Kupfer(I)-jodid , 1978 .

[33]  C. Raston,et al.  Crystal structure of the copper(I) iodide–pyridine (1/1 ) tetramer , 1976 .

[34]  H. Hardt,et al.  Fluorescence thermochromism of pyridine copper iodides and copper iodide , 1973 .