Cryogenic optical lattice clocks

A pair of 87Sr optical lattice clocks with a statistical agreement of 2 × 10−18 within 6,000 s has been developed. To this end, the behaviour of the blackbody radiation—a major perturbation for optical lattice clocks—was directly investigated.

[1]  Wayne M. Itano,et al.  Shift of 2 S 12 hyperfine splittings due to blackbody radiation , 1982 .

[2]  Charles W. Clark,et al.  Blackbody-radiation shift in the Sr optical atomic clock , 2012, 1210.7272.

[3]  Wei Zhang,et al.  An optical lattice clock with accuracy and stability at the 10−18 level , 2013, Nature.

[4]  Moore,et al.  Quantum projection noise: Population fluctuations in two-level systems. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[5]  P. Lemonde,et al.  Observation and cancellation of a perturbing dc stark shift in strontium optical lattice clocks , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[6]  Andrei Derevianko,et al.  Highly charged ions as a basis of optical atomic clockwork of exceptional accuracy. , 2012, Physical review letters.

[7]  Uwe Sterr,et al.  High accuracy correction of blackbody radiation shift in an optical lattice clock. , 2012, Physical review letters.

[8]  M. Takamoto,et al.  Ultrastable optical clock with neutral atoms in an engineered light shift trap , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[9]  Hidetoshi Katori,et al.  Optical lattice clocks and quantum metrology , 2011 .

[10]  H. Dehmelt,et al.  Monoion oscillator as potential ultimate laser frequency standard , 1982, IEEE Transactions on Instrumentation and Measurement.

[11]  A. Ludlow,et al.  An Atomic Clock with 10–18 Instability , 2013, Science.

[12]  P. Rosenbusch,et al.  Experimental realization of an optical second with strontium lattice clocks , 2013, Nature Communications.

[13]  E. Burt,et al.  Lattice-induced frequency shifts in Sr optical lattice clocks at the 10(-17) level. , 2011, Physical review letters.

[14]  C W Oates,et al.  High-accuracy measurement of atomic polarizability in an optical lattice clock. , 2011, Physical review letters.

[15]  M. Okhapkin,et al.  High-accuracy optical clock based on the octupole transition in 171Yb+. , 2011, Physical review letters.

[16]  Hidetoshi Katori,et al.  30-km-long optical fiber link at 1397 nm for frequency comparison between distant strontium optical lattice clocks , 2014 .

[17]  Hidetoshi Katori,et al.  Frequency comparison of optical lattice clocks beyond the Dick limit , 2011 .

[18]  D. Wineland,et al.  Frequency comparison of two high-accuracy Al+ optical clocks. , 2009, Physical review letters.

[19]  Tetsuya Ido,et al.  Recoil-limited laser cooling of 87Sr atoms near the Fermi temperature. , 2003, Physical review letters.

[20]  M. Takamoto,et al.  Trapping of neutral mercury atoms and prospects for optical lattice clocks. , 2007, Physical review letters.

[21]  D. Wineland,et al.  Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place , 2008, Science.

[22]  Ying Li,et al.  Direct Comparison of Distant Optical Lattice Clocks at the 10-16 Uncertainty , 2011, 1108.2774.

[23]  D. Wineland,et al.  Optical Clocks and Relativity , 2010, Science.

[24]  Fritz Riehle,et al.  Tackling the Blackbody Shift in a Strontium Optical Lattice Clock , 2010, IEEE Transactions on Instrumentation and Measurement.

[25]  H. Katori,et al.  Magic wavelength to make optical lattice clocks insensitive to atomic motion. , 2009, Physical review letters.

[26]  M. Takamoto,et al.  Coherence of Spin-Polarized Fermions Interacting with a Clock Laser in a Stark-Shift-Free Optical Lattice(Atomic and molecular physics) , 2009, 0901.1526.

[27]  J. Guéna,et al.  Neutral atom frequency reference in the deep ultraviolet with fractional uncertainty = 5.7×10(-15). , 2012, Physical review letters.

[28]  Sergey G. Porsev,et al.  Multipolar theory of blackbody radiation shift of atomic energy levels and its implications for optical lattice clocks , 2006 .

[29]  Vladislav Gerginov,et al.  A strontium lattice clock with 3 × 10 − 17 ?> inaccuracy and its frequency , 2013, 1312.3419.

[30]  Michito Imae,et al.  Improved Frequency Measurement of a One-Dimensional Optical Lattice Clock with a Spin-Polarized Fermionic 87Sr Isotope , 2006 .

[31]  J. Ye,et al.  Comparison of two independent Sr optical clocks with 1×10(-17) stability at 10(3) s. , 2012, Physical review letters.