Correlating spectral and timing properties in the evolving jet of the microblazar MAXI J1836−194

During outbursts, the observational properties of black hole X-ray binaries vary on time-scales of days to months. These relatively short time-scales make these systems ideal laboratories to probe the coupling between accreting material and outflowing jets as the accretion rate varies. In particular, the origin of the hard X-ray emission is poorly understood and highly debated. This spectral component, which has a power-law shape, is due to Comptonization of photons near the black hole, but it is unclear whether it originates in the accretion flow itself, or at the base of the jet, or possibly the interface region between them. In this paper, we explore the disc–jet connection by modelling the multiwavelength emission of MAXI J1836−194 during its 2011 outburst. We combine radio through X-ray spectra, X-ray timing information, and a robust joint-fitting method to better isolate the jet’s physical properties. Our results demonstrate that the jet base can produce power-law hard X-ray emission in this system/outburst, provided that its base is fairly compact and that the temperatures of the emitting electrons are subrelativistic. Because of energetic considerations, our model favours mildly pair-loaded jets carrying at least 20 pairs per proton. Finally, we find that the properties of the X-ray power spectrum are correlated with the jet properties, suggesting that an underlying physical process regulates both.

[1]  L. Gou,et al.  A detailed study on the reflection component for the black hole candidate MAXI J1836−194 , 2020, Monthly Notices of the Royal Astronomical Society.

[2]  T. Maccarone,et al.  Physical Constraints from Near-infrared Fast Photometry of the Black Hole Transient GX 339–4 , 2019, The Astrophysical Journal.

[3]  A. Tchekhovskoy,et al.  Accelerating AGN jets to parsec scales using general relativistic MHD simulations , 2019, Monthly Notices of the Royal Astronomical Society.

[4]  M. Lucchini,et al.  Combining timing characteristics with physical broad-band spectral modelling of black hole X-ray binary GX 339–4 , 2019, Monthly Notices of the Royal Astronomical Society.

[5]  Umair Mateen Khan,et al.  Stingray: A Modern Python Library for Spectral Timing , 2019, J. Open Source Softw..

[6]  P. Uttley,et al.  The corona contracts in a black-hole transient , 2019, Nature.

[7]  A. Tchekhovskoy,et al.  Bardeen–Petterson alignment, jets, and magnetic truncation in GRMHD simulations of tilted thin accretion discs , 2018, Monthly Notices of the Royal Astronomical Society.

[8]  R. Belmont,et al.  Modelling the compact jet in MAXI J1836-194 with disc-driven shocks , 2018, Monthly Notices of the Royal Astronomical Society.

[9]  P. Uttley,et al.  A model-independent comparison of the variability of accreting neutron stars and black holes , 2018, Monthly Notices of the Royal Astronomical Society.

[10]  Adam Ingram,et al.  Multi-time-scale X-ray reverberation mapping of accreting black holes , 2018, 1801.03100.

[11]  D. Meier,et al.  A new method for extending solutions to the self-similar relativistic magnetohydrodynamic equations for black hole outflows , 2017, 1710.01070.

[12]  R. Connors,et al.  The jet-disk symbiosis without maximal jets: 1D hydrodynamical jets revisited , 2017, 1703.02842.

[13]  R. Walker,et al.  Kinematics of the jet in M 87 on scales of 100–1000 Schwarzschild radii , 2016, 1608.05063.

[14]  S. Rapisarda,et al.  Modelling the cross-spectral variability of the black hole binary MAXI J1659-152 with propagating accretion rate fluctuations , 2016, 1607.08178.

[15]  M. Kino,et al.  HIGH-SENSITIVITY 86 GHz (3.5 mm) VLBI OBSERVATIONS OF M87: DEEP IMAGING OF THE JET BASE AT A RESOLUTION OF 10 SCHWARZSCHILD RADII , 2015, 1512.03783.

[16]  J. Gladstone,et al.  WATCHDOG: A COMPREHENSIVE ALL-SKY DATABASE OF GALACTIC BLACK HOLE X-RAY BINARIES , 2015, 1512.00778.

[17]  A. Tchekhovskoy,et al.  HORIZON-SCALE LEPTON ACCELERATION IN JETS: EXPLAINING THE COMPACT RADIO EMISSION IN M87 , 2015, 1506.04754.

[18]  A. Fabian,et al.  Properties of AGN coronae in the NuSTAR era , 2015 .

[19]  Cambridge,et al.  Radio monitoring of the hard state jets in the 2011 outburst of MAXI J1836 194 , 2015, 1503.08634.

[20]  G. Ghisellini,et al.  The power of relativistic jets is larger than the luminosity of their accretion disks , 2014, Nature.

[21]  S. Corbel,et al.  The radio/X-ray domain of black hole X-ray binaries at the lowest radio luminosities , 2014, 1408.3130.

[22]  J. Malzac The spectral energy distribution of compact jets powered by internal shocks , 2014, 1406.2208.

[23]  P. Uttley,et al.  X-ray reverberation around accreting black holes , 2014, 1405.6575.

[24]  S. Rapisarda,et al.  Evolution of the hot flow of MAXI J1543-564 , 2014, 1403.2308.

[25]  D. Meier,et al.  Linking accretion flow and particle acceleration in jets – II. Self-similar jet models with full relativistic MHD gravitational mass , 2013, 1311.5554.

[26]  M. Klis,et al.  An exact analytic treatment of propagating mass accretion rate fluctuations in X-ray binaries , 2013, 1306.3823.

[27]  T. Slaven-Blair,et al.  AN EVOLVING COMPACT JET IN THE BLACK HOLE X-RAY BINARY MAXI J1836−194 , 2013, 1304.3510.

[28]  T. Dauser,et al.  Irradiation of an accretion disc by a jet: general properties and implications for spin measurements of black holes , 2013, 1301.4922.

[29]  A. Tzioumis,et al.  The 'universal' radio/X-ray flux correlation : the case study of the black hole GX 339-4 , 2012, 1211.1600.

[30]  J. Malzac Internal shocks at the origin of the flat spectral energy distribution of compact jets , 2012, 1210.4308.

[31]  D. Meier,et al.  Linking accretion flow and particle acceleration in jets – I. New relativistic magnetohydrodynamical jet solutions including gravity , 2012, 1209.4920.

[32]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[33]  T. Maccarone,et al.  Accretion flow diagnostics with X-ray spectral timing: the hard state of SWIFT J1753.5-0127 , 2012, 1208.6236.

[34]  G. Cotter,et al.  Synchrotron and inverse-Compton emission from blazar jets I: a uniform conical jet model. , 2012, 1203.3881.

[35]  C. Ferrigno,et al.  The first outburst of the black hole candidate MAXI J1836-194 observed by INTEGRAL, Swift, and RXTE , 2011, 1112.1240.

[36]  D. Walton,et al.  SUZAKU OBSERVATION OF THE BLACK HOLE CANDIDATE MAXI J1836–194 IN A HARD/INTERMEDIATE SPECTRAL STATE , 2011, 1111.6665.

[37]  Harvard,et al.  Efficient Generation of Jets from Magnetically Arrested Accretion on a Rapidly Spinning Black Hole , 2011, 1108.0412.

[38]  S. Anderson,et al.  Using the Fundamental Plane of black hole activity to distinguish X-ray processes from weakly accreting black holes , 2011, 1105.3211.

[39]  C. Gammie,et al.  PAIR PRODUCTION IN LOW-LUMINOSITY GALACTIC NUCLEI , 2011, 1104.2042.

[40]  C. Done,et al.  A physical model for the continuum variability and QPO in accreting black holes , 2011, 1101.2336.

[41]  Joern Wilms,et al.  CORONA, JET, AND RELATIVISTIC LINE MODELS FOR SUZAKU/RXTE/CHANDRA-HETG OBSERVATIONS OF THE CYGNUS X-1 HARD STATE , 2010, 1012.4801.

[42]  D. Meier,et al.  DETERMINING THE OPTIMAL LOCATIONS FOR SHOCK ACCELERATION IN MAGNETOHYDRODYNAMICAL JETS , 2010, 1009.3031.

[43]  G. Ghisellini,et al.  Compton rockets and the minimum power of relativistic jets , 2010, 1008.1982.

[44]  S. Markoff,et al.  Evidence for a compact jet dominating the broad-band spectrum of the black hole accretor XTE J1550–564 , 2010, 1002.3729.

[45]  Robert Mann,et al.  Astronomical Data Analysis Software and Systems XXI , 2012 .

[46]  A. Fabian,et al.  Energetics of a black hole: constraints on the jet velocity and the nature of the X‐ray emitting region in Cyg X‐1 , 2009, 0908.3453.

[47]  M. Noble,et al.  Constraining jet/disc geometry and radiative processes in stellar black holes XTE J1118+480 and GX 339−4 , 2009, 0904.2128.

[48]  Cosmology,et al.  EFFICIENCY OF MAGNETIC TO KINETIC ENERGY CONVERSION IN A MONOPOLE MAGNETOSPHERE , 2009, 0901.4776.

[49]  S. Komissarov,et al.  Magnetic acceleration of ultrarelativistic jets in gamma-ray burst sources , 2008, 0811.1467.

[50]  J. Rodriguez,et al.  Hard X-Ray Emission of the Microquasar GX 339–4 in the Low/Hard State , 2006, astro-ph/0611064.

[51]  Xue-Bing Wu,et al.  Modeling the Hard States of XTE J1550–564 during Its 2000 Outburst , 2006, astro-ph/0608552.

[52]  J. McClintock,et al.  X-Ray Properties of Black-Hole Binaries , 2006, astro-ph/0606352.

[53]  J. McKinney General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems , 2006, astro-ph/0603045.

[54]  P. Uttley,et al.  Investigating a fluctuating-accretion model for the spectral-timing properties of accreting black hole systems , 2005, astro-ph/0512394.

[55]  S. Markoff,et al.  Going with the Flow: Can the Base of Jets Subsume the Role of Compact Accretion Disk Coronae? , 2005, astro-ph/0509028.

[56]  Usa,et al.  The evolution of the timing properties of the black-hole transient GX 339-4 during its 2002/2003 outburst , 2005, astro-ph/0504577.

[57]  T. Belloni,et al.  The Evolution of Black Hole States , 2004, astro-ph/0412597.

[58]  T. Belloni,et al.  A Unified Model for Black Hole X-Ray Binary Jets? , 2004, astro-ph/0506469.

[59]  S. Markoff,et al.  Constraining X-Ray Binary Jet Models via Reflection , 2004, astro-ph/0403468.

[60]  N. Vlahakis,et al.  Magnetic Driving of Relativistic Outflows in Active Galactic Nuclei. I. Interpretation of Parsec-Scale Accelerations , 2003, astro-ph/0310747.

[61]  H. Falcke,et al.  A scheme to unify low-power accreting black holes Jet-dominated accretion flows and the radio/X-ray correlation , 2003, astro-ph/0305335.

[62]  T. D. Matteo,et al.  A Fundamental plane of black hole activity , 2003, astro-ph/0305261.

[63]  R. Sunyaev,et al.  The non-linear dependence of flux on black hole mass and accretion rate in core-dominated jets , 2003, astro-ph/0305252.

[64]  G. Pooley,et al.  A universal radio-X-ray correlation in low/hard state black hole binaries , 2003, astro-ph/0305231.

[65]  A. Tzioumis,et al.  Radio/X-ray correlation in the low/hard state of GX 339-4 , 2003, astro-ph/0301436.

[66]  UCSD,et al.  Long term variability of Cygnus X-1. I. X-ray spectral-temporal correlations in the hard state , 2002, astro-ph/0202258.

[67]  A. Fabian,et al.  Extremely weak reflection features in the X-ray spectrum of XTE J1118+480: possible evidence for X-ray-emitting jets? , 2001, astro-ph/0111027.

[68]  O.Kotov,et al.  On the X-ray time lags in the black hole candidates , 2001, astro-ph/0103115.

[69]  Sera Markoff,et al.  A jet model for the broadband spectrum of XTE J1118+480. Synchrotron emission from radio to X-rays in the , 2000, astro-ph/0010560.

[70]  R. Wijnands,et al.  Correlated X-Ray Spectral and Timing Behavior of the Black Hole Candidate XTE J1550–564: A New Interpretation of Black Hole States , 2000, astro-ph/0001163.

[71]  G. Skinner,et al.  Hard X-Ray Emission from Low-Mass X-Ray Binaries , 1999, astro-ph/9911042.

[72]  C. Done,et al.  The 1989 May outburst of the soft X‐ray transient GS 2023+338 (V404 Cyg) , 1999, astro-ph/9904304.

[73]  K. Makishima,et al.  Evidence for a Black Hole in the X-Ray Transient GRS 1009-45 , 1998 .

[74]  A. Beloborodov Plasma Ejection from Magnetic Flares and the X-Ray Spectrum of Cygnus X-1 , 1998, astro-ph/9809383.

[75]  G. Ghisellini,et al.  Thermalization by synchrotron absorption in compact sources: electron and photon distributions , 1997, astro-ph/9712166.

[76]  Y. Lyubarskii,et al.  Flicker noise in accretion discs , 1997 .

[77]  M. Livio,et al.  The Properties of X-Ray and Optical Light Curves of X-Ray Novae , 1997, astro-ph/9707138.

[78]  C. Winkler,et al.  The Transparent Universe , 1997 .

[79]  G. Matt,et al.  Iron Kα line intensity from accretion discs around rotating black holes , 1996 .

[80]  J. Poutanen,et al.  On the Geometry of the X-Ray-emitting Region in Seyfert Galaxies , 1995, astro-ph/9506035.

[81]  A. Zdziarski,et al.  Angle-dependent Compton reflection of X-rays and gamma-rays , 1995 .

[82]  G. Ghisellini,et al.  A MODEL FOR THE X-RAY AND ULTRAVIOLET EMISSION FROM SEYFERT GALAXIES AND GALACTIC BLACK HOLES , 1994, astro-ph/9405059.

[83]  R. Narayan,et al.  Advection-dominated Accretion: A Self-similar Solution , 1994, astro-ph/9403052.

[84]  Laura Maraschi,et al.  X-Ray Spectra from Two-Phase Accretion Disks , 1993 .

[85]  J. Jokipii Rate of energy gain and maximum energy in diffusive shock acceleration , 1987 .

[86]  Kazuhisa Mitsuda,et al.  Simultaneous X-ray and optical observations of GX 339-4 in an X-ray high state , 1986 .

[87]  R. Blandford,et al.  Semidynamical models of radio jets: relativistic beaming and source counts. , 1985 .

[88]  R. Svensson Steady mildly relativistic thermal plasmas: processes and properties , 1984 .

[89]  Roger D. Blandford,et al.  Relativistic jets as compact radio sources , 1979 .

[90]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .

[91]  G. Blumenthal,et al.  BREMSSTRAHLUNG, SYNCHROTRON RADIATION, AND COMPTON SCATTERING OF HIGH- ENERGY ELECTRONS TRAVERSING DILUTE GASES. , 1970 .