Will the real error floor please stand up?

In this paper we continue our study of the influence of message saturation and quantization on the error-rate performance of iterative, message-passing decoders for low-density parity-check (LDPC) codes. We extend our previous analytical results for the min-sum algorithm (MSA) and its variants to the sum-product algorithm (SPA), demonstrating the significant impact of message saturation on the appearance and location of error floors. Simulation results for selected LDPC codes on the binary symmetric channel (BSC) and the additive white Gaussian noise channel (AWGNC) confirm that the benefits of a quasiuniform quantization scheme, already observed in the context of MSA decoding, apply also to SPA-based decoding.

[1]  David J. C. MacKay,et al.  Weaknesses of Margulis and Ramanujan-Margulis low-density parity-check cCodes , 2003, MFCSIT.

[2]  Ajay Dholakia,et al.  Efficient implementations of the sum-product algorithm for decoding LDPC codes , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[3]  William E. Ryan,et al.  Low-floor decoders for LDPC codes , 2009, IEEE Transactions on Communications.

[4]  David Declercq,et al.  Multilevel decoders surpassing belief propagation on the binary symmetric channel , 2010, 2010 IEEE International Symposium on Information Theory.

[5]  Shashi Kiran Chilappagari,et al.  Error Floors of LDPC Codes on the Binary Symmetric Channel , 2006, 2006 IEEE International Conference on Communications.

[6]  Martin Bossert,et al.  Optimization of a reduced-complexity decoding algorithm for LDPC codes by density evolution , 2005, IEEE International Conference on Communications, 2005. ICC 2005. 2005.

[7]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[8]  Paul H. Siegel,et al.  Efficient Algorithms to Find All Small Error-Prone Substructures in LDPC Codes , 2011, 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011.

[9]  Lara Dolecek,et al.  Design of LDPC decoders for improved low error rate performance: quantization and algorithm choices , 2009, IEEE Transactions on Communications.

[10]  J.M.F. Moura,et al.  Structured LDPC codes for high-density recording: large girth and low error floor , 2006, IEEE Transactions on Magnetics.

[11]  Paul H. Siegel,et al.  Quantized min-sum decoders with low error floor for LDPC codes , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[12]  Jinghu Chen,et al.  Near optimum universal belief propagation based decoding of low-density parity check codes , 2002, IEEE Trans. Commun..

[13]  O. Milenkovic,et al.  Algorithmic and combinatorial analysis of trapping sets in structured LDPC codes , 2005, 2005 International Conference on Wireless Networks, Communications and Mobile Computing.

[14]  Aleksandar Kavcic,et al.  Augmented Belief Propagation Decoding of Low-Density Parity Check Codes , 2006, IEEE Transactions on Communications.

[15]  Brendan J. Frey,et al.  Signal-space characterization of iterative decoding , 2001, IEEE Trans. Inf. Theory.