Interannual variations in degree‐2 Earth's gravity coefficients C2,0, C2,2, and S2,2 reveal large‐scale mass transfers of climatic origin

[1] Several recent studies have shown evidences for large water transfers in the climate system at interannual to decadal time scales, in particular during El Nino-Southern Oscillation events. In this study, we investigate further these water transfers and their signature in the gravity field. We analyze variations of the low-degree spherical harmonics C2,0 (Earth's oblateness), C2,2, and S2,2 (eccentricity at the Earth's equator) from satellite laser ranging data during the 19 year period 1993–2012. We also estimate the water mass transfers in the climate system using satellite altimetry corrected for the steric effect, atmospheric reanalysis, and land hydrology models. We find a large signal in the water mass redistribution during the 1997/1998 El Nino which is consistent with an increase of the ocean mass in the tropical Pacific, a decrease of water storage in the Amazon Basin, and an increase of water storage in the Congo Basin.

[1]  W. Peltier,et al.  GRACE era secular trends in Earth rotation parameters: A global scale impact of the global warming process? , 2011 .

[2]  James S. Famiglietti,et al.  GRACE-Based Estimates of Terrestrial Freshwater Discharge from Basin to Continental Scales , 2007 .

[3]  J. Wallace,et al.  ENSO-like Interdecadal Variability: 1900–93 , 1997 .

[4]  J. Lemoine,et al.  The GeoForschungsZentrum Potsdam/Groupe de Recherche de Gèodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C , 2008 .

[5]  A. Cazenave,et al.  Estimating ENSO Influence on the Global Mean Sea Level, 1993–2010 , 2012 .

[6]  I. Fukumori,et al.  Recent Earth Oblateness Variations: Unraveling Climate and Postglacial Rebound Effects , 2002, Science.

[7]  P. Milly,et al.  Global Modeling of Land Water and Energy Balances. Part I: The Land Dynamics (LaD) Model , 2002 .

[8]  Michael R Pearlman,et al.  THE INTERNATIONAL LASER RANGING SERVICE , 2007 .

[9]  Barbara Scherllin-Pirscher,et al.  A new dynamic approach for statistical optimization of GNSS radio occultation bending angles for optimal climate monitoring utility , 2013 .

[10]  R. Nerem,et al.  Recent changes in the Earth's oblateness driven by Greenland and Antarctic ice mass loss , 2011 .

[11]  M. Kimoto,et al.  Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections , 2009 .

[12]  Shailen D. Desai,et al.  Observing the pole tide with satellite altimetry , 2002 .

[13]  B. Tapley,et al.  Interannual variability of low-degree gravitational change, 1980–2002 , 2005 .

[14]  M. Cheng,et al.  Variations in the Earth's oblateness during the past 28 years , 2004 .

[15]  N. K. Pavlis,et al.  The development and evaluation of the Earth Gravitational Model 2008 (EGM2008) , 2012 .

[16]  R. Steven Nerem,et al.  The 2011 La Niña: So strong, the oceans fell , 2012 .

[17]  M. Cheng,et al.  Deceleration in the Earth's oblateness , 2013 .

[18]  O. Francis,et al.  Modelling the global ocean tides: modern insights from FES2004 , 2006 .

[19]  S. Levitus,et al.  World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010 , 2012 .

[20]  B. Chao,et al.  Time‐variable gravity signal of an anomalous redistribution of water mass in the extratropic Pacific during 1998–2002 , 2003 .

[21]  Robert F. Adler,et al.  Precipitation and Temperature Variations on the Interannual Time Scale: Assessing the Impact of ENSO and Volcanic Eruptions , 2011 .

[22]  A. Cazenave,et al.  Terrestrial Waters and Sea Level Variations on Interannual Time Scale , 2011 .

[23]  B. Chao,et al.  Detection of a Large-Scale Mass Redistribution in the Terrestrial System Since 1998 , 2002, Science.

[24]  P. Döll,et al.  A global hydrological model for deriving water availability indicators: model tuning and validation , 2003 .

[25]  J. Willis,et al.  Earth oblateness changes reveal land ice contribution to interannual sea level variability , 2009 .