Efficient analysis of parametric sensitivity and uncertainty of fuel cell models with application to SOFC

[1]  Wei Tian,et al.  A review of sensitivity analysis methods in building energy analysis , 2013 .

[2]  A. Mawardi,et al.  Effects of parameter uncertainty on the performance variability of proton exchange membrane (PEM) fuel cells , 2006 .

[3]  P. A. Newman,et al.  Approach for uncertainty propagation and robust design in CFD using sensitivity derivatives , 2001 .

[4]  Xiaohang Chen,et al.  Maximum power output and load matching of a phosphoric acid fuel cell-thermoelectric generator hybrid system , 2015 .

[5]  Nathan P. Siegel,et al.  On the influence of temperature on PEM fuel cell operation , 2006 .

[6]  Mubashir Ali Siddiqui,et al.  Performance Model and Sensitivity Analysis for a Solar Thermoelectric Generator , 2017, Journal of Electronic Materials.

[7]  Willy Charon,et al.  Effects of temperature uncertainty on the performance of a degrading PEM fuel cell model , 2009 .

[9]  Max D. Morris,et al.  Factorial sampling plans for preliminary computational experiments , 1991 .

[10]  Yingru Zhao,et al.  A new analytical approach to model and evaluate the performance of a class of irreversible fuel cells , 2008 .

[11]  Gilles Pujol,et al.  Simplex-based screening designs for estimating metamodels , 2009, Reliab. Eng. Syst. Saf..

[12]  Amanda D. Smith,et al.  Incorporating performance-based global sensitivity and uncertainty analysis into LCOE calculations for emerging renewable energy technologies , 2018 .

[13]  S. Isukapalli,et al.  Stochastic Response Surface Methods (SRSMs) for Uncertainty Propagation: Application to Environmental and Biological Systems , 1998, Risk analysis : an official publication of the Society for Risk Analysis.

[14]  Gerard Coquery,et al.  A PEMFC multi-physical model to evaluate the consequences of parameter uncertainty on the fuel cell performance , 2015 .

[15]  Tomasz Kozlowski,et al.  Combining simulations and data with deep learning and uncertainty quantification for advanced energy modeling , 2019, International Journal of Energy Research.

[16]  Bin Chen,et al.  Two-stage thermoelectric generators for waste heat recovery from solid oxide fuel cells , 2017 .

[17]  Tomasz Kozlowski,et al.  Integrated framework for model assessment and advanced uncertainty quantification of nuclear computer codes under Bayesian statistics , 2019, Reliab. Eng. Syst. Saf..

[18]  Phillip N. Hutton,et al.  A macro-level model for determining the performance characteristics of solid oxide fuel cells , 2004 .

[19]  Shriram Santhanagopalan,et al.  Modeling Parametric Uncertainty Using Polynomial Chaos Theory , 2007 .

[20]  W. Tao,et al.  Parameter sensitivity examination and discussion of PEM fuel cell simulation model validation. Part II: Results of sensitivity analysis and validation of the model , 2006 .

[21]  Jincan Chen,et al.  Performance analysis and parametric study of a solid oxide fuel cell fueled by carbon monoxide , 2013 .

[22]  B. Iooss,et al.  Global sensitivity analysis for a numerical model of radionuclide migration from the RRC “Kurchatov Institute” radwaste disposal site , 2008 .

[23]  S. Chan,et al.  A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness , 2001 .

[24]  Hans-Georg Frede,et al.  Comparison of two different approaches of sensitivity analysis , 2002 .

[25]  D. Wee Uncertainty and sensitivity of the maximum power in thermoelectric generation with temperature-dependent material properties: An analytic polynomial chaos approach , 2018 .

[26]  D. Leung,et al.  Parametric study of solid oxide fuel cell performance , 2007 .

[27]  Omar M. Knio,et al.  Spectral Methods for Uncertainty Quantification , 2010 .

[28]  A. Saltelli,et al.  Importance measures in global sensitivity analysis of nonlinear models , 1996 .

[29]  Meng Ni,et al.  Modeling of a solid oxide electrolysis cell for carbon dioxide electrolysis , 2010 .

[30]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[31]  M. Radaideh,et al.  Shapley effect application for variance-based sensitivity analysis of the few-group cross-sections , 2019, Annals of Nuclear Energy.

[32]  Kurt Maute,et al.  On Uncertainty Quantification of Lithium-ion Batteries: Application to an LiC$_6$/LiCoO$_2$ cell , 2015, 1505.07776.

[33]  S. Ebbesen,et al.  Electrolysis of carbon dioxide in Solid Oxide Electrolysis Cells , 2009 .

[34]  J. Jorné,et al.  Measurement of Tortuosity and Porosity of Porous Battery Electrodes , 2014 .

[35]  H. Gorgun,et al.  In situ simultaneous measurements of temperature and water partial pressure in a PEM fuel cell under steady state and dynamic cycling , 2006 .

[36]  Emanuele Borgonovo,et al.  Sensitivity analysis: A review of recent advances , 2016, Eur. J. Oper. Res..

[37]  M. Radaideh,et al.  A new framework for sampling-based uncertainty quantification of the six-group reactor kinetic parameters , 2019, Annals of Nuclear Energy.

[38]  M. Radaideh,et al.  Advanced BWR criticality safety part I: Model development, model benchmarking, and depletion with uncertainty analysis , 2019, Progress in Nuclear Energy.

[39]  Andrea Saltelli,et al.  An effective screening design for sensitivity analysis of large models , 2007, Environ. Model. Softw..

[40]  Kristin Isaacs,et al.  Estimating Sobol sensitivity indices using correlations , 2012, Environ. Model. Softw..

[41]  Paul G. Constantine,et al.  Time‐dependent global sensitivity analysis with active subspaces for a lithium ion battery model , 2016, Stat. Anal. Data Min..

[42]  Jon C. Helton,et al.  Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive waste disposal , 1993 .

[43]  C. Adjiman,et al.  Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance , 2004 .

[44]  Omar Z. Sharaf,et al.  An overview of fuel cell technology: Fundamentals and applications , 2014 .

[45]  Jon C. Helton,et al.  Survey of sampling-based methods for uncertainty and sensitivity analysis , 2006, Reliab. Eng. Syst. Saf..

[46]  H. H. Ku Notes on the Use of Propagation of Error Formulas , 2010 .

[47]  V. Vishnyakov Proton exchange membrane fuel cells , 2006 .

[48]  F. Brown,et al.  Adjoint-Based k-Eigenvalue Sensitivity Coefficients to Nuclear Data Using Continuous-Energy Monte Carlo , 2013 .