In-Situ Approaches for the Preparation of Polythiophene-Derivative Cellulose Composites with High Flexibility and Conductivity

This research was supported by CDTI research project IDI- 20180087. We also thanks the Consejo Nacional de Ciencia y Tecnologia for CVU 559770/Registro 297710 and S2013/MAE-2800.

[1]  T. Otero,et al.  Conformational energy from the oxidation kinetics of poly(3,4-ethylenedioxythiophene) films , 2010 .

[2]  F. Smits Measurement of sheet resistivities with the four-point probe , 1958 .

[3]  Tao Cheng,et al.  Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. , 2015, Chemical Society reviews.

[4]  A. Sarac,et al.  Nanoscale surface morphology and monomer concentration dependence on impedance of electrocoated 2,2-dimethyl-3,4-propylene-dioxythiophene on carbon fiber microelectrode. , 2007, Journal of nanoscience and nanotechnology.

[5]  O. Inganäs,et al.  Conducting Polymer Hydrogels as 3D Electrodes: Applications for Supercapacitors , 1999 .

[6]  A. Heeger,et al.  Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x , 1977 .

[7]  S. M. Aharoni Rigid backbone polymers XXI: Stress-strain behaviour of uncrosslinked and of crosslinked rodlike polyisocyanates , 1981 .

[8]  A. Best,et al.  Conducting-polymer-based supercapacitor devices and electrodes , 2011 .

[9]  D.B.M. Klaassen,et al.  Electroplating of conductive polymers for the metallization of insulators , 1994 .

[10]  K. Varahramyan,et al.  Conductive wood microfibres for smart paper through layer-by-layer nanocoating , 2006 .

[11]  M. Tsuboi Infrared spectrum and crystal structure of cellulose , 1957 .

[12]  Hiroyasu Masunaga,et al.  PEDOT Nanocrystal in Highly Conductive PEDOT:PSS Polymer Films , 2012 .

[13]  X. Qian,et al.  PREPARATION AND CHARACTERIZATION OF CONDUCTIVE PAPER VIA IN SITU POLYMERIZATION OF 3,4-ETHYLENEDIOXYTHIOPHENE , 2011 .

[14]  M. Bicchieri,et al.  The Degradation of Cellulose with Ferric and Cupric Ions in a Low-acid Medium , 1996 .

[15]  T. Gomes,et al.  Roughness influence on the sheet resistance of the PEDOT:PSS printed on paper , 2018 .

[16]  A. Ivaska,et al.  Electrochemical synthesis and in situ spectroelectrochemical characterization of poly(3,4-ethylenedioxythiophene) (PEDOT) in room temperature ionic liquids , 2004 .

[17]  Pilar Tiemblo,et al.  Superhydrophobic and highly luminescent polyfluorene/silica hybrid coatings deposited onto glass and cellulose-based substrates. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[18]  M. El‐Kady,et al.  Vapor-phase polymerization of nanofibrillar poly(3,4-ethylenedioxythiophene) for supercapacitors. , 2014, ACS nano.

[19]  Jinxing Huo,et al.  Solution-processed poly(3,4-ethylenedioxythiophene) nanocomposite paper electrodes for high-capacitance flexible supercapacitors , 2016 .

[20]  L. Nyholm,et al.  Toward Flexible Polymer and Paper‐Based Energy Storage Devices , 2011, Advanced materials.

[21]  A. Heeger,et al.  Mechanical and electrical properties of poly-(2,5-thienylene vinylene) fibers , 1990 .

[22]  I. Cretescu,et al.  Preparation, characterization and applicability of cellulose acetate–polyurethane blend membrane in separation techniques , 2010 .

[23]  A. Heeger,et al.  Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials , 2001, Angewandte Chemie.

[24]  O. Inganäs,et al.  Fast Optical Spectroscopy of the Electrochemical Doping of Poly(3,4‐ethylenedioxythiophene) , 1998 .

[25]  P. Pissis,et al.  Highly conducting poly(methyl methacrylate)/carbon nanotubes composites: Investigation on their thermal, dynamic-mechanical, electrical and dielectric properties , 2011 .

[26]  Gordon G Wallace,et al.  Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices , 2013, Nature Communications.

[27]  Anisotropic conductivity of Cellulose-PEDOT:PSS composite materials studied with a generic 3D four-point probe tool , 2019, Organic Electronics.

[28]  Renaud Demadrille,et al.  Structure and Dopant Engineering in PEDOT Thin Films: Practical Tools for a Dramatic Conductivity Enhancement , 2016 .

[29]  L. Nyholm,et al.  Cellulose‐based Supercapacitors: Material and Performance Considerations , 2017 .

[30]  Christopher Bruner,et al.  Role of Molecular Weight on the Mechanical Device Properties of Organic Polymer Solar Cells , 2014 .

[31]  A. Synytska,et al.  Multipurpose ultra and superhydrophobic surfaces based on oligodimethylsiloxane-modified nanosilica. , 2014, ACS applied materials & interfaces.

[32]  Benjamin D. Reeves,et al.  Spray Coatable Electrochromic Dioxythiophene Polymers with High Coloration Efficiencies , 2004 .

[33]  Brett D. Martin,et al.  Towards a Transparent, Highly Conductive Poly(3,4‐ethylenedioxythiophene) , 2004 .

[34]  K. Gleason,et al.  Enhanced Optical Property with Tunable Band Gap of Cross‐linked PEDOT Copolymers via Oxidative Chemical Vapor Deposition , 2015 .

[35]  Lina Zhang,et al.  Highly specific capacitance materials constructed via in situ synthesis of polyaniline in a cellulose matrix for supercapacitors , 2014, Cellulose.

[36]  TaeYoung Kim,et al.  Effects of alcoholic solvents on the conductivity of tosylate‐doped poly(3,4‐ethylenedioxythiophene) (PEDOT‐OTs) , 2006 .

[37]  Husam N. Alshareef,et al.  A conducting polymer nucleation scheme for efficient solid-state supercapacitors on paper , 2014 .

[38]  John R. Reynolds,et al.  Regiosymmetric Dibutyl-Substituted Poly(3,4-propylenedioxythiophene)s as Highly Electron-Rich Electroactive and Luminescent Polymers , 2002 .