An exact approach for the bilevel knapsack problem with interdiction constraints and extensions

We consider the bilevel knapsack problem with interdiction constraints, an extension of the classic 0–1 knapsack problem formulated as a Stackelberg game with two agents, a leader and a follower, that choose items from a common set and hold their own private knapsacks. First, the leader selects some items to be interdicted for the follower while satisfying a capacity constraint. Then the follower packs a set of the remaining items according to his knapsack constraint in order to maximize the profits. The goal of the leader is to minimize the follower’s total profit. We derive effective lower bounds for the bilevel knapsack problem and present an exact method that exploits the structure of the induced follower’s problem. The approach strongly outperforms the current state-of-the-art algorithms designed for the problem. We extend the same algorithmic framework to the interval min–max regret knapsack problem after providing a novel bilevel programming reformulation. Also for this problem, the proposed approach outperforms the exact algorithms available in the literature.

[1]  Massimiliano Caramia,et al.  Enhanced exact algorithms for discrete bilevel linear problems , 2015, Optim. Lett..

[2]  Federico Della Croce,et al.  An exact approach for the 0-1 knapsack problem with setups , 2017, Comput. Oper. Res..

[3]  Jonathan Cole Smith,et al.  A class of algorithms for mixed-integer bilevel min–max optimization , 2015, Journal of Global Optimization.

[4]  Robert G. Jeroslow,et al.  The polynomial hierarchy and a simple model for competitive analysis , 1985, Math. Program..

[5]  Manuel Iori,et al.  Heuristic and Exact Algorithms for the Interval Min-Max Regret Knapsack Problem , 2015, INFORMS J. Comput..

[6]  David Pisinger A Fast Algorithm for Strongly Correlated Knapsack Problems , 1998, Discret. Appl. Math..

[7]  Gerhard J. Woeginger,et al.  Bilevel Knapsack with Interdiction Constraints , 2016, INFORMS J. Comput..

[8]  Matteo Fischetti,et al.  A New General-Purpose Algorithm for Mixed-Integer Bilevel Linear Programs , 2017, Oper. Res..

[9]  Matteo Fischetti,et al.  A dynamic reformulation heuristic for Generalized Interdiction Problems , 2017, Eur. J. Oper. Res..

[10]  Federico Della Croce,et al.  A new exact approach for the Bilevel Knapsack with Interdiction Constraints , 2019, IPCO.

[11]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[12]  Matteo Fischetti,et al.  On the use of intersection cuts for bilevel optimization , 2017, Mathematical Programming.

[13]  Ted K. Ralphs,et al.  A Branch-and-cut Algorithm for Integer Bilevel Linear Programs , 2009 .

[14]  Ulrich Pferschy,et al.  Improved dynamic programming and approximation results for the knapsack problem with setups , 2018, Int. Trans. Oper. Res..

[15]  Michele Monaci,et al.  On the Product Knapsack Problem , 2018, Optim. Lett..

[16]  S. Martello,et al.  Dynamic Programming and Strong Bounds for the 0-1 Knapsack Problem , 1999 .

[17]  David Pisinger,et al.  A Minimal Algorithm for the 0-1 Knapsack Problem , 1997, Oper. Res..

[18]  Andrea Pacifici,et al.  A Stackelberg knapsack game with weight control , 2019, Theor. Comput. Sci..

[19]  Heinrich von Stackelberg,et al.  Stackelberg (Heinrich von) - The Theory of the Market Economy, translated from the German and with an introduction by Alan T. PEACOCK. , 1953 .

[20]  Lin Chen,et al.  Approximation algorithms for a bi-level knapsack problem , 2013, Theor. Comput. Sci..

[21]  Pan Xu,et al.  An exact algorithm for the bilevel mixed integer linear programming problem under three simplifying assumptions , 2014, Comput. Oper. Res..

[22]  Daniel Vanderpooten,et al.  Min-max and min-max regret versions of combinatorial optimization problems: A survey , 2009, Eur. J. Oper. Res..

[23]  Walter Kern,et al.  Improved approximation algorithms for a bilevel knapsack problem , 2015, Theor. Comput. Sci..

[24]  Federico Della Croce,et al.  A new exact approach for the 0-1 Collapsing Knapsack Problem , 2017, Eur. J. Oper. Res..

[25]  Gerhard J. Woeginger,et al.  Pinpointing the complexity of the interval min-max regret knapsack problem , 2010, Discret. Optim..

[26]  Gerhard J. Woeginger,et al.  A Complexity and Approximability Study of the Bilevel Knapsack Problem , 2013, IPCO.

[27]  Michele Monaci,et al.  Exact approaches for the knapsack problem with setups , 2018, Comput. Oper. Res..

[28]  Andrea Lodi,et al.  A polynomial algorithm for a continuous bilevel knapsack problem , 2018, Oper. Res. Lett..

[29]  Pan Xu,et al.  The Watermelon Algorithm for The Bilevel Integer Linear Programming Problem , 2017, SIAM J. Optim..

[30]  David Pisinger,et al.  Linear Time Algorithms for Knapsack Problems with Bounded Weights , 1999, J. Algorithms.

[31]  Jonathan F. Bard,et al.  The Mixed Integer Linear Bilevel Programming Problem , 1990, Oper. Res..

[32]  Federico Della Croce,et al.  New exact approaches and approximation results for the Penalized Knapsack Problem , 2019, Discret. Appl. Math..

[33]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[34]  T. Ralphs,et al.  Interdiction and discrete bilevel linear programming , 2011 .

[35]  Matteo Fischetti,et al.  Interdiction Games and Monotonicity, with Application to Knapsack Problems , 2019, INFORMS J. Comput..

[36]  Saïd Hanafi,et al.  One-level reformulation of the bilevel Knapsack problem using dynamic programming , 2013, Discret. Optim..