Critical Parallelization of Local Search for MAX-SAT

In this work we investigate the effects of the parallelization of a local search algorithm for MAX-SAT. The variables of the problem are divided in subsets and local search is applied to each of them in parallel, supposing that variables belonging to other subsets remain unchanged. We show empirical evidence for the existence of a critical level of parallelism which leads to the best performance. This result allows to improve local search and adds new elements to the investigation of criticality and parallelism in combinatorial optimization problems.

[1]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[2]  Nenad Mladenović,et al.  An Introduction to Variable Neighborhood Search , 1997 .

[3]  Benjamin W. Wah,et al.  Discrete Lagrangian-Based Search for Solving MAX-SAT Problems , 1997, IJCAI.

[4]  Bart Selman,et al.  Evidence for Invariants in Local Search , 1997, AAAI/IAAI.

[5]  Marco Dorigo,et al.  The ant colony optimization meta-heuristic , 1999 .

[6]  Andrea Roll Criticality and Parallelism in GSAT , 2001, Electron. Notes Discret. Math..

[7]  Stuart A. Kauffman,et al.  Technological evolution and adaptive organizations: Ideas from biology may find applications in economics , 1995, Complex..

[8]  Hector J. Levesque,et al.  A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.

[9]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[10]  Dittes Optimization on rugged landscapes: A new general purpose Monte Carlo approach. , 1996, Physical review letters.

[11]  Alain Hertz,et al.  A Taxonomy of Evolutionary Algorithms in Combinatorial Optimization , 1999, J. Heuristics.

[12]  Athanassios Siapas,et al.  Criticality and Parallelism in Combinatorial Optimization , 1996, Science.

[13]  Silvano Martello,et al.  Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization , 2012 .

[14]  Stuart A. Kauffman,et al.  ORIGINS OF ORDER , 2019, Origins of Order.

[15]  Pablo Moscato,et al.  Memetic algorithms: a short introduction , 1999 .

[16]  Thomas Stützle,et al.  Local search algorithms for combinatorial problems: analysis, algorithms, and new applications , 1999 .

[17]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[18]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[19]  Roberto Battiti,et al.  Reactive search, a history-sensitive heuristic for MAX-SAT , 1997, JEAL.