Maximization of Non-Monotone Submodular Functions

A litany of questions from a wide variety of scientific disciplines can be cast as non-monotone submodular maximization problems. Since this class of problems includes max-cut, it is NP-hard. Thus, general purpose algorithms for the class tend to be approximation algorithms. For unconstrained problem instances, one recent innovation in this vein includes an algorithm of Buchbinder et al. (2012) that guarantees a 1⁄2 approximation to the maximum. Building on this, for problems subject to cardinality constraints, Buchbinderet al. (2014) o_er guarantees in the range [0:356; 1⁄2 + o(1)]. Earlier work has the best approximation factors for more complex constraints and settings. For constraints that can be characterized as a solvable polytope, Chekuri et al. (2011) provide guarantees. For the online secretary setting, Gupta et al. (2010) provide guarantees. In sum, the current body of work on non-monotone submodular maximization lays strong foundations. However, there remains ample room for future algorithm development. Disciplines Computer Engineering | Computer Sciences Comments MS-CIS-14-01 This technical report is available at ScholarlyCommons: http://repository.upenn.edu/cis_reports/988 Maximization of Non-Monotone Submodular Functions Jennifer Gillenwater

[1]  Francis R. Bach,et al.  Learning with Submodular Functions: A Convex Optimization Perspective , 2011, Found. Trends Mach. Learn..

[2]  Leslie G. Valiant,et al.  NP is as easy as detecting unique solutions , 1985, STOC '85.

[3]  Andreas Krause,et al.  Near-optimal Nonmyopic Value of Information in Graphical Models , 2005, UAI.

[4]  Elchanan Mossel,et al.  Submodularity of Influence in Social Networks: From Local to Global , 2010, SIAM J. Comput..

[5]  Morteza Zadimoghaddam,et al.  Submodular secretary problem and extensions , 2013, TALG.

[6]  Maxim Sviridenko,et al.  An 0.828-approximation Algorithm for the Uncapacitated Facility Location Problem , 1999, Discret. Appl. Math..

[7]  A. M. FRIEZE A cost function property for plant location problems , 1974, Math. Program..

[8]  Vahab S. Mirrokni,et al.  Non-monotone submodular maximization under matroid and knapsack constraints , 2009, STOC '09.

[9]  Joseph Naor,et al.  Submodular Maximization with Cardinality Constraints , 2014, SODA.

[10]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[11]  Jan Vondrák,et al.  Optimal approximation for the submodular welfare problem in the value oracle model , 2008, STOC.

[12]  Ben Taskar,et al.  Determinantal Point Processes for Machine Learning , 2012, Found. Trends Mach. Learn..

[13]  Ben Taskar,et al.  Near-Optimal MAP Inference for Determinantal Point Processes , 2012, NIPS.

[14]  Joseph Naor,et al.  A Tight Linear Time (1/2)-Approximation for Unconstrained Submodular Maximization , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[15]  Jan Vondr Symmetry and Approximability of Submodular Maximization Problems , 2013 .

[16]  V. Nagarajan,et al.  MAXIMIZING NON-MONOTONE SUBMODULAR FUNCTIONS UNDER MATROID AND KNAPSACK CONSTRAINTS , 2007 .

[17]  Vahab S. Mirrokni,et al.  Maximizing Non-Monotone Submodular Functions , 2011, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[18]  Roy Schwartz,et al.  Improved competitive ratios for submodular secretary problems , 2011 .

[19]  Samir Khuller,et al.  The Budgeted Maximum Coverage Problem , 1999, Inf. Process. Lett..

[20]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[21]  Mohammad Taghi Hajiaghayi,et al.  Adaptive limited-supply online auctions , 2004, EC '04.

[22]  Philip Wolfe,et al.  An algorithm for quadratic programming , 1956 .

[23]  Vahab Mirrokni,et al.  Maximizing Non-Monotone Submodular Functions , 2007, FOCS 2007.

[24]  Robert D. Kleinberg A multiple-choice secretary algorithm with applications to online auctions , 2005, SODA '05.

[25]  Tengyu Ma,et al.  The Simulated Greedy Algorithm for Several Submodular Matroid Secretary Problems , 2013, STACS.

[26]  Andreas Krause,et al.  Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies , 2008, J. Mach. Learn. Res..

[27]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[28]  Jan Vondrák,et al.  Symmetry and Approximability of Submodular Maximization Problems , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[29]  Vahab S. Mirrokni,et al.  Optimal marketing strategies over social networks , 2008, WWW.

[30]  Aaron Roth,et al.  Constrained Non-monotone Submodular Maximization: Offline and Secretary Algorithms , 2010, WINE.

[31]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[32]  Jan Vondrák,et al.  Maximizing a Monotone Submodular Function Subject to a Matroid Constraint , 2011, SIAM J. Comput..

[33]  Jan Vondrák,et al.  Maximizing a Submodular Set Function Subject to a Matroid Constraint (Extended Abstract) , 2007, IPCO.

[34]  Andreas S. Schulz,et al.  Approximating the least core value and least core of cooperative games with supermodular costs , 2013, Discret. Optim..

[35]  Chandra Chekuri,et al.  Submodular function maximization via the multilinear relaxation and contention resolution schemes , 2011, STOC '11.

[36]  Hui Lin,et al.  Learning Mixtures of Submodular Shells with Application to Document Summarization , 2012, UAI.

[37]  Jan Vondrák,et al.  Submodular maximization by simulated annealing , 2010, SODA '11.

[38]  Joseph Naor,et al.  A Unified Continuous Greedy Algorithm for Submodular Maximization , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[39]  Takeo Kanade,et al.  Distributed cosegmentation via submodular optimization on anisotropic diffusion , 2011, 2011 International Conference on Computer Vision.

[40]  Tim Roughgarden,et al.  Revenue submodularity , 2009, EC '09.

[41]  Nicole Immorlica,et al.  Matroids, secretary problems, and online mechanisms , 2007, SODA '07.

[42]  Shahar Dobzinski,et al.  From query complexity to computational complexity , 2012, STOC '12.