Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition

Abstract The existence of nontrivial solutions of Kirchhoff type equations is an important nonlocal quasilinear problem; in this paper we use minimax methods and invariant sets of descent flow to prove two interesting existence theorems for the following 4-superlinear Kirchhoff type problems without the P.S. condition, one concerning the existence of a nontrivial solution and the other one concerning the existence of sign-changing solutions and multiple solutions, { − ( a + b ∫ Ω | ∇ u | 2 ) △ u = f ( x , u ) in  Ω , u = 0 on  ∂ Ω .

[1]  Yanheng Ding,et al.  On a nonlinear Schrödinger equation with periodic potential , 1999 .

[2]  Andrzej Szulkin,et al.  Generalized linking theorem with an application to a semilinear Schrödinger equation , 1998, Advances in Differential Equations.

[3]  S. Spagnolo,et al.  Global solvability for the degenerate Kirchhoff equation with real analytic data , 1992 .

[4]  E. N. Dancer,et al.  Fucik Spectrum, Sign-Changing, and Multiple Solutions for Semilinear Elliptic Boundary Value Problems with Resonance at Infinity , 2000 .

[5]  Yanheng Ding,et al.  Periodic solutions for a class of first order super-quadratic Hamiltonian system , 2007 .

[6]  To Fu Ma,et al.  Positive solutions for a quasilinear elliptic equation of Kirchhoff type , 2005 .

[7]  Stefano Panizzi,et al.  On the Well-Posedness of the Kirchhoff String , 1996 .

[8]  Jaime E. Muñoz Rivera,et al.  Positive solutions for a nonlinear nonlocal elliptic transmission problem , 2003, Appl. Math. Lett..

[9]  Giovanna Cerami Un criterio di esistenza per i punti critici su varieta'illimitate , 1978 .

[10]  P. Rabinowitz,et al.  Dual variational methods in critical point theory and applications , 1973 .

[11]  Jingxian Sun,et al.  Invariant Sets of Descending Flow in Critical Point Theory with Applications to Nonlinear Differential Equations , 2001 .

[12]  Kanishka Perera,et al.  Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow , 2006 .

[13]  B. Buffoni,et al.  Existence of a nontrivial solution to a strongly indefinite semilinear equation , 1993 .

[14]  M. Willem,et al.  Nontrivial solution of a semilinear Schrodinger equation , 1996 .

[15]  L. Jeanjean Solutions in Spectral Gaps for a Nonlinear Equation of Schrödinger Type , 1994 .

[16]  Michel Chipot,et al.  Some remarks on non local elliptic and parabolic problems , 1997 .

[17]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[18]  Yanheng Ding MULTIPLE HOMOCLINICS IN A HAMILTONIAN SYSTEM WITH ASYMPTOTICALLY OR SUPER LINEAR TERMS , 2006 .

[19]  M. Schechter,et al.  Double resonance problems with respect to the Fucik spectrum , 2003 .

[20]  M. Schechter A Variation of the Mountain Pass Lemma and Applications , 1991 .

[21]  Kanishka Perera,et al.  Nontrivial solutions of Kirchhoff-type problems via the Yang index , 2006 .

[22]  YanYan Li,et al.  Existence of solutions for semilinear elliptic equations with indefinite linear part , 1992 .

[23]  Zhaoli Liu,et al.  Nodal type bound states of Schrödinger equations via invariant set and minimax methods , 2005 .

[24]  Jacques-Louis Lions,et al.  On Some Questions in Boundary Value Problems of Mathematical Physics , 1978 .

[25]  Jingxian Sun,et al.  Four versus two solutions of semilinear elliptic boundary value problems , 2002 .

[26]  Marcelo M. Cavalcanti,et al.  Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation , 2001, Advances in Differential Equations.