Low-Rank Tensor Methods for Communicating Markov Processes
暂无分享,去创建一个
[1] Richard Barrett,et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.
[2] Eugene E. Tyrtyshnikov,et al. Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..
[3] Jean-Michel Fourneau,et al. PEPS: A Package for Solving Complex Markov Models of Parallel Systems , 1989 .
[4] U. Schollwoeck. The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.
[5] W. Stewart,et al. The Kronecker product and stochastic automata networks , 2004 .
[6] Tamara G. Kolda,et al. MATLAB Tensor Toolbox , 2006 .
[7] Jean-Michel Fourneau,et al. An algebraic condition for product form in stochastic automata networks without synchronizations , 2008, Perform. Evaluation.
[8] James R. Jackson,et al. Jobshop-Like Queueing Systems , 2004, Manag. Sci..
[9] Vladimir A. Kazeev,et al. Direct Solution of the Chemical Master Equation Using Quantized Tensor Trains , 2014, PLoS Comput. Biol..
[10] William J. Stewart,et al. Introduction to the numerical solution of Markov Chains , 1994 .
[11] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[12] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[13] S. R. Clark,et al. Dynamical simulations of classical stochastic systems using matrix product states. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.
[14] Peter Buchholz. Product form approximations for communicating Markov processes , 2010, Perform. Evaluation.
[15] Dmitry V. Savostyanov. QTT-rank-one vectors with QTT-rank-one and full-rank Fourier images , 2012 .
[16] Vidyadhar G. Kulkarni,et al. Introduction to modeling and analysis of stochastic systems , 2011 .
[17] Amy Nicole Langville,et al. A Kronecker product approximate preconditioner for SANs , 2004, Numer. Linear Algebra Appl..
[18] Peter Buchholz,et al. An adaptive decomposition approach for the analysis of stochastic Petri nets , 2002, Proceedings International Conference on Dependable Systems and Networks.
[19] Daniel Kressner,et al. Low-Rank Tensor Methods with Subspace Correction for Symmetric Eigenvalue Problems , 2014, SIAM J. Sci. Comput..
[20] White,et al. Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.
[21] Daniel Kressner,et al. A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.
[22] S. White. Density matrix renormalization group algorithms with a single center site , 2005, cond-mat/0508709.
[23] S. V. Dolgov,et al. ALTERNATING MINIMAL ENERGY METHODS FOR LINEAR SYSTEMS IN HIGHER DIMENSIONS∗ , 2014 .
[24] Gene H. Golub,et al. Matrix computations , 1983 .
[25] Ivan Oseledets,et al. Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..
[26] Jean-Michel Fourneau. Product Form Steady-State Distribution for Stochastic Automata Networks with Domino Synchronizations , 2008, EPEW.
[27] Martin J. Mohlenkamp,et al. Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..
[28] Sheldon M. Ross,et al. Introduction to probability models , 1975 .
[29] Stephen J. Wright,et al. Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .
[30] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[31] Allan Clark,et al. State-Aware Performance Analysis with eXtended Stochastic Probes , 2008, EPEW.