Low-Rank Tensor Methods for Communicating Markov Processes

Stochastic models that describe interacting processes, such as stochastic automata networks, feature a dimensionality that grows exponentially with the number of processes. This state space explosion severely impairs the use of standard methods for the numerical analysis of such Markov chains. In this work, we discuss the approximation of solutions by matrix product states or, equivalently, by tensor train decompositions. Two classes of algorithms based on this low-rank decomposition are proposed, using either iterative truncation or alternating optimization. Our approach significantly extends existing approaches based on product form solutions and can, in principle, attain arbitrarily high accuracy. Numerical experiments demonstrate that the newly proposed algorithms are particularly well suited to deal with pairwise neighbor interactions.

[1]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[2]  Eugene E. Tyrtyshnikov,et al.  Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..

[3]  Jean-Michel Fourneau,et al.  PEPS: A Package for Solving Complex Markov Models of Parallel Systems , 1989 .

[4]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[5]  W. Stewart,et al.  The Kronecker product and stochastic automata networks , 2004 .

[6]  Tamara G. Kolda,et al.  MATLAB Tensor Toolbox , 2006 .

[7]  Jean-Michel Fourneau,et al.  An algebraic condition for product form in stochastic automata networks without synchronizations , 2008, Perform. Evaluation.

[8]  James R. Jackson,et al.  Jobshop-Like Queueing Systems , 2004, Manag. Sci..

[9]  Vladimir A. Kazeev,et al.  Direct Solution of the Chemical Master Equation Using Quantized Tensor Trains , 2014, PLoS Comput. Biol..

[10]  William J. Stewart,et al.  Introduction to the numerical solution of Markov Chains , 1994 .

[11]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[12]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[13]  S. R. Clark,et al.  Dynamical simulations of classical stochastic systems using matrix product states. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Peter Buchholz Product form approximations for communicating Markov processes , 2010, Perform. Evaluation.

[15]  Dmitry V. Savostyanov QTT-rank-one vectors with QTT-rank-one and full-rank Fourier images , 2012 .

[16]  Vidyadhar G. Kulkarni,et al.  Introduction to modeling and analysis of stochastic systems , 2011 .

[17]  Amy Nicole Langville,et al.  A Kronecker product approximate preconditioner for SANs , 2004, Numer. Linear Algebra Appl..

[18]  Peter Buchholz,et al.  An adaptive decomposition approach for the analysis of stochastic Petri nets , 2002, Proceedings International Conference on Dependable Systems and Networks.

[19]  Daniel Kressner,et al.  Low-Rank Tensor Methods with Subspace Correction for Symmetric Eigenvalue Problems , 2014, SIAM J. Sci. Comput..

[20]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[21]  Daniel Kressner,et al.  A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.

[22]  S. White Density matrix renormalization group algorithms with a single center site , 2005, cond-mat/0508709.

[23]  S. V. Dolgov,et al.  ALTERNATING MINIMAL ENERGY METHODS FOR LINEAR SYSTEMS IN HIGHER DIMENSIONS∗ , 2014 .

[24]  Gene H. Golub,et al.  Matrix computations , 1983 .

[25]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[26]  Jean-Michel Fourneau Product Form Steady-State Distribution for Stochastic Automata Networks with Domino Synchronizations , 2008, EPEW.

[27]  Martin J. Mohlenkamp,et al.  Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..

[28]  Sheldon M. Ross,et al.  Introduction to probability models , 1975 .

[29]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[30]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[31]  Allan Clark,et al.  State-Aware Performance Analysis with eXtended Stochastic Probes , 2008, EPEW.