Supporting Creativity: Towards Associative Discovery of New Insights

In this paper we outline an approach for network-based information access and exploration. In contrast to existing methods, the presented framework allows for the integration of both semantically meaningful information as well as loosely coupled information fragments from heterogeneous information repositories. The resulting Bisociative Information Networks (BisoNets) together with explorative navigation methods facilitate the discovery of links across diverse domains. In addition to such "chains of evidence", they enable the user to go back to the original information repository and investigate the origin of each link, ultimately resulting in the discovery of previously unknown connections between information entities of different domains, subsequently triggering new insights and supporting creative discoveries.

[1]  Andreas Nürnberger,et al.  Towards Associative Information Access , 2006 .

[2]  Phoebe M. Roberts,et al.  Mining literature for systems biology , 2006, Briefings Bioinform..

[3]  Alain Viari,et al.  GenoLink: a graph-based querying and browsing system for investigating the function of genes and proteins , 2006, BMC Bioinformatics.

[4]  Robert Hecht-Nielsen,et al.  Confabulation theory , 2007, Scholarpedia.

[5]  Thure Etzold,et al.  SRS - an indexing and retrieval tool for flat file data libraries , 1993, Comput. Appl. Biosci..

[6]  S. Chung,et al.  Kleisli: a new tool for data integration in biology. , 1999, Trends in biotechnology.

[7]  Russell Beale,et al.  Applying connectionist models to information retrieval , 1998 .

[8]  Edward M. Reingold,et al.  Graph drawing by force‐directed placement , 1991, Softw. Pract. Exp..

[9]  Ulrik Brandes,et al.  Network Analysis: Methodological Foundations (Lecture Notes in Computer Science) , 2005 .

[10]  Val Tannen,et al.  K2/Kleisli and GUS: Experiments in integrated access to genomic data sources , 2001, IBM Syst. J..

[11]  R. Sternberg Handbook of Creativity: Subject Index , 1998 .

[12]  Tina Eliassi-Rad,et al.  Visual Analysis of Large Heterogeneous Social Networks by Semantic and Structural Abstraction , 2006 .

[13]  Ben Shneiderman,et al.  Network Visualization by Semantic Substrates , 2006, IEEE Transactions on Visualization and Computer Graphics.

[14]  Subbarao Kambhampati,et al.  Integration of biological sources: current systems and challenges ahead , 2004, SGMD.

[15]  M. Kanehisa,et al.  DBGET/LinkDB: an integrated database retrieval system. , 1998, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[16]  Norbert Fuhr,et al.  Probabilistic Models in Information Retrieval , 1992, Comput. J..

[17]  Carole A. Goble,et al.  Transparent access to multiple bioinformatics information sources , 2001, IBM Syst. J..

[18]  H. Chen,et al.  An Algorithmic Approach to Concept Exploration in a Large Knowledge Network (Automatic Thesaurus Consultation): Symbolic Branch-and-Bound Search vs. Connectionist Hopfield Net Activation , 1995, J. Am. Soc. Inf. Sci..

[19]  Fabio Crestani,et al.  Application of Spreading Activation Techniques in Information Retrieval , 1997, Artificial Intelligence Review.

[20]  Tao Xu,et al.  Atlas – a data warehouse for integrative bioinformatics , 2005, BMC Bioinformatics.

[21]  Laura M. Haas,et al.  DiscoveryLink: A system for integrated access to life sciences data sources , 2001, IBM Syst. J..

[22]  M. Gerstein,et al.  A Bayesian Networks Approach for Predicting Protein-Protein Interactions from Genomic Data , 2003, Science.

[23]  Hannu Toivonen,et al.  Link Discovery in Graphs Derived from Biological Databases , 2006, DILS.

[24]  G. Schuler,et al.  Entrez: molecular biology database and retrieval system. , 1996, Methods in enzymology.

[25]  Miguel A. Andrade-Navarro,et al.  Automatic Extraction of Biological Information from Scientific Text: Protein-Protein Interactions , 1999, ISMB.

[26]  Amarnath Gupta,et al.  PathSys: integrating molecular interaction graphs for systems biology , 2006, BMC Bioinformatics.

[27]  Jarke J. van Wijk,et al.  Interactive Visualization of Small World Graphs , 2004, IEEE Symposium on Information Visualization.

[28]  Nicola J. Rinaldi,et al.  Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2002, Science.

[29]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[30]  James Abello,et al.  MGV: A System for Visualizing Massive Multidigraphs , 2002, IEEE Trans. Vis. Comput. Graph..

[31]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[32]  C. Wijmenga,et al.  Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. , 2006, American journal of human genetics.

[33]  J. Blake,et al.  Creating the Gene Ontology Resource : Design and Implementation The Gene Ontology Consortium 2 , 2001 .

[34]  G. V. Paolini,et al.  Global mapping of pharmacological space , 2006, Nature Biotechnology.

[35]  Michael Heine,et al.  Finding Out About: A Cognitive Perspective on Search Engine Technology and the WWW , 2002, J. Documentation.

[36]  Christina Backes,et al.  BNDB – The Biochemical Network Database , 2007, BMC Bioinformatics.

[37]  James F. Brinkley,et al.  BioMediator Data Integration: Beyond Genomics to Neuroscience Data , 2005, AMIA.

[38]  Nikola Kasabov,et al.  Brain-like Computing and Intelligent Information Systems , 1998 .

[39]  Jung-Hsien Chiang,et al.  MeKE: Discovering the Functions of Gene Products from Biomedical Literature Via Sentence Alignment , 2003, Bioinform..

[40]  D. Figeys Combining different 'omics' technologies to map and validate protein-protein interactions in humans. , 2004, Briefings in functional genomics & proteomics.

[41]  C. J. van Rijsbergen,et al.  Finding Out About: A Cognitive Perspective on Search Engine Technology and the WWW , 2001 .

[42]  Thorsten Meinl,et al.  KNIME: The Konstanz Information Miner , 2007, GfKl.

[43]  Ulrik Brandes,et al.  Network Analysis: Methodological Foundations , 2010 .

[44]  Xiaohua Hu,et al.  Data Mining and Predictive Modeling of Biomolecular Network from Biomedical Literature Databases , 2007, TCBB.

[45]  Richard K. Belew,et al.  Adaptive information retrieval: using a connectionist representation to retrieve and learn about documents , 1989, SIGIR '89.

[46]  R. Sharan,et al.  Network-based prediction of protein function , 2007, Molecular systems biology.

[47]  Golan Yona,et al.  BIOZON: a system for unification, management and analysis of heterogeneous biological data , 2006, BMC Bioinformatics.

[48]  A. Koestler The Act of Creation , 1964 .

[49]  Jeyakumar Natarajan,et al.  Text mining of full-text journal articles combined with gene expression analysis reveals a relationship between sphingosine-1-phosphate and invasiveness of a glioblastoma cell line , 2006, BMC Bioinformatics.