GTPase Mechanisms and Functions of Translation Factors on the Ribosome

Abstract The elongation factors (EF) Tu and G and initiation factor 2 (IF2) from bacteria are multidomain GTPases with essential functions in the elongation and initiation phases of translation. They bind to the same site on the ribosome where their low intrinsic GTPase activities are strongly stimulated. The factors differ fundamentally from each other, and from the majority of GTPases, in the mechanisms of GTPase control, the timing of Pi release, and the functional role of GTP hydrolysis. EF-Tu·GTP forms a ternary complex with aminoacyl-tRNA, which binds to the ribosome. Only when a matching codon is recognized, the GTPase of EF-Tu is stimulated, rapid GTP hydrolysis and Pi release take place, EF-Tu rearranges to the GDP form, and aminoacyl-tRNA is released into the peptidyltransferase center. In contrast, EF-G hydrolyzes GTP immediately upon binding to the ribosome, stimulated by ribosomal protein L7/12. Subsequent translocation is driven by the slow dissociation of Pi, suggesting a mechano-chemical function of EF-G. Accordingly, different conformations of EF-G on the ribosome are revealed by cryo-electron microscopy. GTP hydrolysis by IF2 is triggered upon formation of the 70S initiation complex, and the dissociation of Pi and/or IF2 follows a rearrangement of the ribosome into the elongation-competent state.

[1]  T. Pape,et al.  Complete kinetic mechanism of elongation factor Tu‐dependent binding of aminoacyl‐tRNA to the A site of the E.coli ribosome , 1998, The EMBO journal.

[2]  P. Moore Molecular Mimicry in Protein Synthesis? , 1995, Science.

[3]  W. Kabsch,et al.  The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. , 1997, Science.

[4]  A. Liljas,et al.  The structure of elongation factor G in complex with GDP: conformational flexibility and nucleotide exchange. , 1996, Structure.

[5]  C. Gualerzi,et al.  The C-terminal Subdomain (IF2 C-2) Contains the Entire fMet-tRNA Binding Site of Initiation Factor IF2* , 2000, The Journal of Biological Chemistry.

[6]  H. Noller,et al.  Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA , 1988, Nature.

[7]  S Thirup,et al.  The crystal structure of Cys-tRNACys-EF-Tu-GDPNP reveals general and specific features in the ternary complex and in tRNA. , 1999, Structure.

[8]  J. Puglisi,et al.  Paromomycin binding induces a local conformational change in the A-site of 16 S rRNA. , 1998, Journal of molecular biology.

[9]  M. Rodnina,et al.  Dynamics of translation on the ribosome: molecular mechanics of translocation. , 1999, FEMS microbiology reviews.

[10]  T. Pape,et al.  Elongation factor Tu, a GTPase triggered by codon recognition on the ribosome: mechanism and GTP consumption. , 1995, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[11]  J. Nyborg,et al.  Macromolecular mimicry in protein biosynthesis. , 1997, Folding & design.

[12]  S Thirup,et al.  Crystal Structure of the Ternary Complex of Phe-tRNAPhe, EF-Tu, and a GTP Analog , 1995, Science.

[13]  L. Isaksson,et al.  Emerging Understanding of Translation Termination , 1996, Cell.

[14]  J. Wang,et al.  The crystal structure of elongation factor G complexed with GDP, at 2.7 A resolution. , 1994, The EMBO journal.

[15]  W. Tapprich,et al.  A single base mutation at position 2661 in E. coli 23S ribosomal RNA affects the binding of ternary complex to the ribosome. , 1990, The EMBO journal.

[16]  E. Dabbs,et al.  Mutants of Escherichia coli lacking ribosomal protein L11. , 1980, The Journal of biological chemistry.

[17]  R. Brimacombe,et al.  Visualization of elongation factor Tu on the Escherichia coli ribosome , 1997, Nature.

[18]  M. Yarus,et al.  tRNA on the Ribosome: a Waggle Theory , 1995 .

[19]  M. Sprinzl,et al.  Interaction of elongation factor Tu from Escherichia coli with aminoacyl-tRNA carrying a fluorescent reporter group on the 3' terminus. , 1989, European journal of biochemistry.

[20]  J. Bodley,et al.  Equilibrium measurements of the interactions of guanine nucleotides with Escherichia coli elongation factor G and the ribosome. , 1976, Biochemistry.

[21]  Y. Kaziro The role of guanosine 5'-triphosphate in polypeptide chain elongation. , 1978, Biochimica et biophysica acta.

[22]  M. Rodnina,et al.  Transient conformational states of aminoacyl-tRNA during ribosome binding catalyzed by elongation factor Tu. , 1994, Biochemistry.

[23]  K. Lieberman,et al.  Genetic probes of ribosomal RNA function. , 1995, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[24]  J. Goldberg Structural and Functional Analysis of the ARF1–ARFGAP Complex Reveals a Role for Coatomer in GTP Hydrolysis , 1999, Cell.

[25]  H. Hamm,et al.  GTPase mechanism of Gproteins from the 1.7-Å crystal structure of transducin α - GDP AIF−4 , 1994, Nature.

[26]  A. Liljas Protein synthesis: Imprinting through molecular mimicry , 1996, Current Biology.

[27]  R. Brimacombe,et al.  Arrangement of tRNAs in Pre- and Posttranslocational Ribosomes Revealed by Electron Cryomicroscopy , 1997, Cell.

[28]  R. Thompson,et al.  The rate of cleavage of GTP on the binding of Phe-tRNA.elongation factor Tu.GTP to poly(U)-programmed ribosomes of Escherichia coli. , 1985, The Journal of biological chemistry.

[29]  T. Earnest,et al.  X-ray crystal structures of 70S ribosome functional complexes. , 1999, Science.

[30]  M. Heel,et al.  Large-Scale Movement of Elongation Factor G and Extensive Conformational Change of the Ribosome during Translocation , 2000, Cell.

[31]  C. Gualerzi,et al.  Translation Initiation in Bacteria , 2000 .

[32]  M. Rodnina,et al.  Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome , 1997, Nature.

[33]  S. Sprang,et al.  Structure of RGS4 Bound to AlF4 −-Activated Giα1: Stabilization of the Transition State for GTP Hydrolysis , 1997, Cell.

[34]  S. Smerdon,et al.  Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP , 1997, Nature.

[35]  Joachim Frank,et al.  EF-G-dependent GTP hydrolysis induces translocation accompanied by large conformational changes in the 70S ribosome , 1999, Nature Structural Biology.

[36]  A E Dahlberg,et al.  A conformational switch in Escherichia coli 16S ribosomal RNA during decoding of messenger RNA. , 1997, Science.

[37]  T. D. Ting,et al.  Molecular mechanism of GTP hydrolysis by bovine transducin: pre-steady-state kinetic analyses. , 1991, Biochemistry.

[38]  J Frank,et al.  Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[39]  J. Nyborg,et al.  Refined structure of elongation factor EF-Tu from Escherichia coli. , 1992, Journal of molecular biology.

[40]  T. Pape,et al.  Induced fit in initial selection and proofreading of aminoacyl‐tRNA on the ribosome , 1999, The EMBO journal.

[41]  T. Pape,et al.  Conformational switch in the decoding region of 16S rRNA during aminoacyl-tRNA selection on the ribosome , 2000, Nature Structural Biology.

[42]  V. A. Dell,et al.  Effects of nucleotide- and aurodox-induced changes in elongation factor Tu conformation upon its interactions with aminoacyl transfer RNA. A fluorescence study. , 1990, Biochemistry.

[43]  Katrin Rittinger,et al.  Structure at 1.65 Å of RhoA and its GTPase-activating protein in complex with a transition-state analogue , 1997, Nature.

[44]  S. Sprang,et al.  Structures of active conformations of Gi alpha 1 and the mechanism of GTP hydrolysis. , 1994, Science.

[45]  M. Webb,et al.  Kinetics of inorganic phosphate release during the interaction of p21ras with the GTPase-activating proteins, p120-GAP and neurofibromin. , 1995, Biochemistry.

[46]  R. Hilgenfeld How do the GTPases really work? , 1995, Nature Structural Biology.

[47]  T. Pape,et al.  Initial Binding of the Elongation Factor Tu·GTP·Aminoacyl-tRNA Complex Preceding Codon Recognition on the Ribosome (*) , 1996, The Journal of Biological Chemistry.

[48]  M. Rodnina,et al.  Stimulation of the GTPase Activity of Translation Elongation Factor G by Ribosomal Protein L7/12* , 2000, The Journal of Biological Chemistry.

[49]  R. Hilgenfeld,et al.  Crystal structure of active elongation factor Tu reveals major domain rearrangements , 1993, Nature.

[50]  M. Rodnina,et al.  Late events of translation initiation in bacteria: a kinetic analysis , 2000, The EMBO journal.

[51]  H. Noller,et al.  Evidence for functional interaction between elongation factor Tu and 16S ribosomal RNA. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[52]  A. Liljas,et al.  Three‐dimensional structure of the ribosomal translocase: elongation factor G from Thermus thermophilus. , 1994, The EMBO journal.

[53]  R. Huber,et al.  Flexibility, conformational diversity and two dimerization modes in complexes of ribosomal protein L12 , 2000, The EMBO journal.

[54]  M. Selmer,et al.  Crystal structure of Thermotoga maritima ribosome recycling factor: a tRNA mimic. , 1999, Science.

[55]  M. Sprinzl,et al.  Initiation factors of protein biosynthesis in bacteria and their structural relationship to elongation and termination factors , 1998, Molecular microbiology.

[56]  Frank McCormick,et al.  The GTPase superfamily: conserved structure and molecular mechanism , 1991, Nature.

[57]  O. Uhlenbeck,et al.  Intact aminoacyl-tRNA is required to trigger GTP hydrolysis by elongation factor Tu on the ribosome. , 2000, Biochemistry.

[58]  M. Rodnina,et al.  Thiostrepton inhibits the turnover but not the GTPase of elongation factor G on the ribosome. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Rolf Hilgenfeld,et al.  An α to β conformational switch in EF-Tu , 1996 .

[60]  Y. Nakamura,et al.  Conserved motifs in prokaryotic and eukaryotic polypeptide release factors: tRNA-protein mimicry hypothesis. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[62]  Frank McCormick,et al.  The GTPase superfamily: a conserved switch for diverse cell functions , 1990, Nature.

[63]  A. Oleinikov,et al.  Location and domain structure of Escherichia coli ribosomal protein L7/L12: site specific cysteine crosslinking and attachment of fluorescent probes. , 1995, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[64]  T. Laue,et al.  Direct determination of the association constant between elongation factor Tu X GTP and aminoacyl-tRNA using fluorescence. , 1985, Biochemistry.

[65]  Poul Nissen,et al.  Placement of protein and RNA structures into a 5 Å-resolution map of the 50S ribosomal subunit , 1999, Nature.

[66]  S Thirup,et al.  Helix unwinding in the effector region of elongation factor EF-Tu-GDP. , 1996, Structure.

[67]  P. Moore,et al.  The conformational properties of elongation factor G and the mechanism of translocation. , 1997, Biochemistry.

[68]  J. Nyborg,et al.  The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. , 1993, Structure.

[69]  J. Puglisi,et al.  Structure of the A Site of Escherichia coli 16S Ribosomal RNA Complexed with an Aminoglycoside Antibiotic , 1996, Science.

[70]  M. Rodnina,et al.  Codon‐dependent conformational change of elongation factor Tu preceding GTP hydrolysis on the ribosome. , 1995, The EMBO journal.

[71]  F. Wittinghofer Ras signalling: Caught in the act of the switch-on , 1998, Nature.

[72]  M. Rodnina,et al.  Site-Directed Mutagenesis of Thermus thermophilus Elongation Factor Tu , 1995 .

[73]  R. Vale,et al.  Switches, latches, and amplifiers: common themes of G proteins and molecular motors , 1996, The Journal of cell biology.