On-site energy management challenges and opportunities: a contractor's perspective

Although numerous policies encourage CO2 and energy consumption reduction within the UK non-domestic sector, most measures are primarily focused towards reducing operational impacts, but largely overlook embodied impacts, particularly within the construction process. On-site construction refers to the energy consumed during the installation of materials up to project practical completion and represents the largest share of construction process CO2 emissions. Contractors have a pivotal role to play in reducing CO2 and energy consumption due to their significant involvement in project procurement and on-site construction. The key challenges and opportunities are investigated for delivering on-site energy management within UK non-domestic projects from a contractor's perspective. A case study is presented of a large UK principal contractor's on-site energy management practices, based on a wide geographical sample of non-domestic projects and operatives. Shortcomings are found within the contractor's current on-site energy management procedure across the three reporting levels (director, operations and project). Findings identified the lack of data authentication as a significant challenge, whereas capturing additional project variables to facilitate future benchmarking was deemed as a key opportunity for on-site energy management enhancement. Bien que de nombreuses politiques encouragent une réduction du CO2 et de la consommation d'énergie dans le secteur non résidentiel au Royaume-Uni, la plupart des mesures visent principalement à réduire les impacts opérationnels, mais négligent largement les impacts intrinsèques, en particulier dans le processus de construction. La construction sur chantier fait référence à l'énergie consommée de l'installation des matériaux jusqu'à la réalisation concrète du projet et représente la part la plus importante des émissions de CO2 au cours du processus de construction. Les entrepreneurs ont un rôle crucial à jouer dans la réduction du CO2 et de la consommation d'énergie du fait de leur importante implication dans la passation des marchés et dans la construction sur chantier. Les principales difficultés et opportunités sont examinées pour que soit assurée une bonne gestion de l'énergie sur les chantiers dans les projets non résidentiels britanniques du point de vue de l'entrepreneur. Est présentée une étude de cas portant sur les pratiques de gestion de l'énergie sur les chantiers d'un important maître d'œuvre britannique, sur la base d'un large échantillon géographique de projets non résidentiels et de modes opératoires. Il est constaté des insuffisances dans la procédure actuelle de gestion de l'énergie qui est utilisée sur les chantiers par les entrepreneurs sur l'ensemble des trois niveaux hiérarchiques (directeur, exploitation et projet). Les constatations ont identifié le manque d'authentification des données comme un défi important à relever, tandis que la saisie de variables supplémentaires des projets pour faciliter l'évaluation future des performances a été considérée comme une opportunité essentielle pour l'amélioration de la gestion de l'énergie sur les chantiers. Mots clés: processus de construction, entrepreneurs, gestion de l'énergie, indicateurs de performance environnementale, non résidentiel, construction sur chantier

[1]  Joshua D. Kneifel,et al.  Life-cycle carbon and cost analysis of energy efficiency measures in new commercial buildings , 2010 .

[2]  Grace Ding,et al.  Developing a multicriteria approach for the measurement of sustainable performance , 2005 .

[3]  Craig Langston,et al.  Reliability of building embodied energy modelling: an analysis of 30 Melbourne case studies , 2008 .

[4]  Amm Liu,et al.  Research Methods for Construction (3rd ed.) , 2008 .

[5]  D. Myers A review of construction companies' attitudes to sustainability , 2005 .

[6]  Steven J. Skerlos,et al.  Greenhouse gas mitigation policies and the transportation sector: The role of feedback effects on policy effectiveness , 2009 .

[7]  Andy P. Field,et al.  Discovering Statistics Using SPSS , 2000 .

[8]  Dino Bouchlaghem,et al.  Review of benchmarks for small power consumption in office buildings , 2012 .

[9]  Ki-Hoon Lee,et al.  Achieving Sustainable Corporate Competitiveness , 2003 .

[10]  George Baird,et al.  Use of a hybrid energy analysis method for evaluating the embodied energy of building materials , 1996 .

[11]  Anne Grete Hestnes,et al.  Energy use in the life cycle of conventional and low-energy buildings: A review article , 2007 .

[12]  M. Jones Accounting for the environment: Towards a theoretical perspective for environmental accounting and reporting , 2010 .

[13]  Bert Scholtens,et al.  Incentives for subcontractors to adopt CO2 emission reporting and reduction techniques , 2011 .

[14]  Andrew Miller Embodied Energy – A life-cycle of transportation energy embodied in construction materials , 2001 .

[15]  J. Ravetz State of the stock--What do we know about existing buildings and their future prospects? , 2008 .

[16]  Pratima Bansal,et al.  Strategic Explanations for the Early Adoption of ISO 14001 , 2003 .

[17]  Ravi Prakash,et al.  Life cycle energy analysis of buildings: An overview , 2010 .

[18]  Sarel Lavy,et al.  Identification of parameters for embodied energy measurement: A literature review , 2010 .

[19]  Mark Hinnells,et al.  Technologies to achieve demand reduction and microgeneration in buildings , 2008 .

[20]  Grace Kam Chun Ding,et al.  The development of a multi-criteria approach for the measurement of sustainable performance for built projects and facilities , 2004 .

[21]  Maggie Walter,et al.  Social Research Methods (Second Edition) , 2009 .

[22]  John Holmberg,et al.  Direct and indirect energy use and carbon emissions in the production phase of buildings: An input-output analysis , 2007 .

[23]  David Coley,et al.  Building a better future: An exploration of beliefs about climate change and perceived need for adap , 2011 .

[24]  Lei Xu,et al.  The life-cycle assessment of a single-storey retail building in Canada , 2012 .

[25]  Ki-Hoon Lee,et al.  Achieving Sustainable Corporate Competitiveness: The Strategic Link between Top Management's (Green) Commitment and Corporate Environmental Strategy , 2003 .

[26]  R. Gray Is accounting for sustainability actually accounting for sustainability…and how would we know? An exploration of narratives of organisations and the planet , 2010 .

[27]  John S. Monahan,et al.  An embodied carbon and energy analysis of modern methods of construction in housing: A case study us , 2011 .

[28]  A. Dlugolecki,et al.  The Carbon Disclosure Project , 2003 .

[29]  Joseph Cascio,et al.  The ISO 14000 handbook , 1996 .

[30]  Raymond J. Cole,et al.  Energy and greenhouse gas emissions associated with the construction of alternative structural systems , 1998 .

[31]  Jamie Goggins,et al.  The assessment of embodied energy in typical reinforced concrete building structures in Ireland , 2010 .

[32]  D. M. Hrisak,et al.  Accounting and the environment , 1996 .

[33]  Robin Spence,et al.  Sustainable development and the construction industry , 1995 .

[34]  Yongtao Tan,et al.  Sustainable construction practice and contractors’ competitiveness: A preliminary study , 2011 .

[35]  Edward Vine,et al.  Strategies and policies for improving energy efficiency programs : Closing the loop between evaluation and implementation , 2008 .

[36]  Savvas A. Tassou,et al.  Energy consumption and conservation in food retailing , 2011 .

[37]  Leif Gustavsson,et al.  Life cycle primary energy use and carbon emission of an eight-storey wood-framed apartment building , 2010 .

[38]  K. Adalberth,et al.  Energy use during the life cycle of buildings: a method , 1997 .

[39]  David Pearlmutter,et al.  A life-cycle energy analysis of building materials in the Negev desert , 2008 .

[40]  Hesan A. Quazi,et al.  Motivation for ISO 14000 certification: Development of a predictive model , 2001 .

[41]  Alban Thomas,et al.  What Drives Agrifood Firms to Register for an Environmental Management System , 2007 .

[42]  David Hillier,et al.  Corporate social responsibility and the UK construction industry , 2006 .

[43]  Weisheng Lu,et al.  A computer-based scoring method for measuring the environmental performance of construction activities , 2005 .

[44]  G. Treloar,et al.  Life-cycle energy analysis of buildings: a case study , 2000 .

[45]  David Lehrer,et al.  Comparative advantage: the impact of ISO 14001 environmental certification on exports. , 2005, Environmental science & technology.

[46]  Bert Bras,et al.  Environmental Management and Assessment , 2001 .

[47]  Michael J Tierney,et al.  Measured energy and water performance of an aspiring low energy/carbon affordable housing site in th , 2011 .

[48]  Fabio Iraldo,et al.  Environmental Management Systems and SMEs , 2000 .

[49]  Andrew H. Buchanan,et al.  Energy and carbon dioxide implications of building construction , 1994 .

[50]  Kevin J. Lomas,et al.  Identifying trends in the use of domestic appliances from household electricity consumption measurements , 2008 .

[51]  Ilan Vertinsky,et al.  Why Japanese Firms Choose to Certify: A Study of Managerial Responses to Environmental Issues , 2001 .