Comparison of the electro-optical performances of symmetrical and asymmetrical MWIR InAs/GaSb superlattice pin photodiodes

We report the full electrooptical characterization of two MWIR InAs/GaSb superlattice (SL) pin photodiodes. The first one features a symmetrical period with 8 InAs monolayers (MLs) and 8 GaSb MLs, while the second one relies on an asymmetrical period with 7.5 InAs MLs and 3.5 GaSb MLs. This asymmetrical design was recently proposed by IES to both decrease the dark current (since it decreases the intrinsic carrier concentration) and increase the quantum efficiency (since it increases the wavefunctions overlap). We present dark current, noise, spectral response and quantum efficiency measurements. Our results confirm that the asymmetrical design allows to greatly improve the performance of MWIR SL pin photodiodes, with an improvement of more than one decade in terms of dark current and an improvement of a factor 1.5 in terms of quantum efficiency. The noise measurements under dark conditions show that the symmetrical (asymmetrical) sample remains Schottky noise-limited up to a bias voltage of -600mV (resp -800mV) and that 1/f noise remains very low.

[1]  Alexander Soibel,et al.  Gain and noise of high-performance long wavelength superlattice infrared detectors , 2010 .

[2]  Achim Trampert,et al.  Interface analysis of InAs/GaSb superlattice grown by MBE , 2007 .

[3]  Jeffrey H. Warner,et al.  Controlling dark current in type-II superlattice photodiodes , 2009 .

[4]  Philippe Christol,et al.  Characterization of midwave infrared InAs/GaSb superlattice photodiode , 2009 .

[5]  Philippe Christol,et al.  Wet etching and chemical polishing of InAs/GaSb superlattice photodiodes , 2009 .

[6]  Cory J. Hill,et al.  Characterization of LWIR diodes on InAs/GaSb Type-II superlattice material , 2009 .

[7]  Manijeh Razeghi,et al.  Surface leakage reduction in narrow band gap type-II antimonide-based superlattice photodiodes , 2009 .

[8]  H. S. Kim,et al.  Type II InAs∕GaSb strain layer superlattice detectors with p-on-n polarity , 2007 .

[9]  D. Ting,et al.  A high-performance long wavelength superlattice complementary barrier infrared detector , 2009 .

[10]  J. P. Perez,et al.  Unambiguous determination of carrier concentration and mobility for InAs/GaSb superlattice photodiode optimization , 2009 .

[11]  Manijeh Razeghi,et al.  Noise analysis in type-II InAs/GaSb focal plane arrays , 2009 .

[12]  A. Rogalski,et al.  Third-generation infrared photodetector arrays , 2009 .

[13]  Manijeh Razeghi,et al.  High performance long wavelength infrared mega-pixel focal plane array based on type-II superlattices , 2010 .

[14]  Jean Nguyen,et al.  High temperature operation of long-wavelength infrared superlattice detector with supressed dark current , 2009 .

[15]  Philippe Christol,et al.  A type-II superlattice period with a modified InAs to GaSb thickness ratio for midwavelength infrared photodiode performance improvement , 2010 .

[16]  Meimei Z. Tidrow Type II strained layer superlattice: A potential future IR solution , 2009 .

[17]  Elena Plis,et al.  Reduction of surface leakage current in InAs/GaSb strained layer long wavelength superlattice detectors using SU-8 passivation , 2010 .

[18]  Martin Walther,et al.  InAs/GaSb superlattice focal plane arrays for high-resolution thermal imaging , 2005, Optics + Optoelectronics.

[19]  M. Razeghi,et al.  Uncooled operation of type-II InAs∕GaSb superlattice photodiodes in the midwavelength infrared range , 2005 .

[20]  Philippe Christol,et al.  Uncooled InAs/GaSb superlattice photovoltaic detector operating in the mid-wavelength infrared range , 2005 .

[21]  Jeffrey H. Warner,et al.  Graded band gap for dark-current suppression in long-wave infrared W-structured type-II superlattice photodiodes , 2006 .

[22]  David H. Tomich,et al.  Exploring optimum growth for high quality InAs/GaSb type-II superlattices , 2004 .

[23]  M. Razeghi,et al.  Band edge tunability of M-structure for heterojunction design in Sb based type II superlattice photodiodes , 2008 .

[24]  Gregory Belenky,et al.  Carrier lifetime measurements in short-period InAs/GaSb strained-layer superlattice structures , 2009 .

[25]  J B Rodriguez,et al.  Noise Characterization of Midwave Infrared InAs/GaSb Superlattice pin Photodiode , 2011, IEEE Photonics Technology Letters.

[26]  Elena Plis,et al.  Midwave infrared type-II InAs∕GaSb superlattice detectors with mixed interfaces , 2006 .

[27]  Manijeh Razeghi,et al.  Background limited long wavelength infrared type-II InAs/GaSb superlattice photodiodes operating at 110 K , 2008 .

[28]  Manijeh Razeghi,et al.  On the performance and surface passivation of type II InAs∕GaSb superlattice photodiodes for the very-long-wavelength infrared , 2005 .

[29]  Yajun Wei,et al.  Capacitance-voltage investigation of high-purity InAs∕GaSb superlattice photodiodes , 2006 .

[30]  Peter P. Chow,et al.  Improvement of R0A product of type-II InAs/GaSb superlattice MWIR/LWIR photodiodes , 2009 .

[31]  William C. Mitchel,et al.  Study of residual background carriers in midinfrared InAs∕GaSb superlattices for uncooled detector operation , 2008 .

[32]  Manijeh Razeghi,et al.  Influence of residual impurity background on the nonradiative recombination processes in high purity InAs∕GaSb superlattice photodiodes , 2006 .

[33]  Alexander Soibel,et al.  Dark current analysis of InAs/GaSb superlattices at low temperatures , 2009 .

[34]  Elena Plis,et al.  Modeling of electrical characteristics of midwave type II InAs∕GaSb strain layer superlattice diodes , 2008 .

[35]  H. S. Kim,et al.  nBn structure based on InAs /GaSb type-II strained layer superlattices , 2007 .