Nonlinear analysis of traffic time series at different temporal scales

[1]  F. Takens Detecting strange attractors in turbulence , 1981 .

[2]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[3]  Gottfried Mayer-Kress,et al.  Dimensions and Entropies in Chaotic Systems , 1986 .

[4]  Joachim Holzfuss,et al.  Approach to error-estimation in the application of dimension algorithms , 1986 .

[5]  Klaus Fraedrich,et al.  Estimating the Dimensions of Weather and Climate Attractors , 1986 .

[6]  Klaus Fraedrich,et al.  Scaling regimes of composite rainfall time series , 1993 .

[7]  Walter Willinger,et al.  On the self-similar nature of Ethernet traffic , 1993, SIGCOMM '93.

[8]  Robert C. Hilborn,et al.  Chaos And Nonlinear Dynamics: An Introduction for Scientists and Engineers , 1994 .

[9]  Paczuski,et al.  Emergent traffic jams. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[11]  Peter Nijkamp,et al.  (Un)predictability in Traffic and Transport Decision Making , 1999 .

[12]  Dirk Roose,et al.  Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL , 2002, TOMS.

[13]  Shlomo Havlin,et al.  Delay-induced chaos with multifractal attractor in a traffic flow model , 2002 .

[14]  R. E. Wilson,et al.  Global bifurcation investigation of an optimal velocity traffic model with driver reaction time. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  I. Gasser,et al.  Bifurcation analysis of a class of ‘car following’ traffic models , 2004 .

[16]  Xuewei Li,et al.  Chaotic analysis of traffic time series , 2005 .

[17]  R. E. Wilson,et al.  Bifurcations and multiple traffic jams in a car-following model with reaction-time delay , 2005 .

[18]  Pengjian Shang,et al.  Fractal nature of time series in the sediment transport phenomenon , 2005 .