Space-Time Adaptive Processing With Vertical Frequency Diverse Array for Range-Ambiguous Clutter Suppression

A high-pulse-repetition-frequency (PRF) radar can handle the high Doppler frequencies of clutter echoes received by a fast-moving airborne radar. However, high-PRF radar causes range ambiguity. In addition, the clutter is range dependent when the airborne radar works in a forward-looking geometry. The range ambiguity and range dependence will lead to severe performance degradation of the traditional space-time adaptive processing (STAP) methods. In this paper, a vertical frequency diverse array (FDA), which applies frequency diversity in the vertical of a planar array, is explored to circumvent the range ambiguity problem in STAP radar. A range-ambiguous clutter suppression approach is devised, which consists of vertical spatial frequency compensation and pre-STAP filtering. In the vertical-FDA radar, the vertical spatial frequency depends not only on the depression angle but also on the slant range. By using this characteristic, the range-ambiguous clutter can be separated in the vertical spatial frequency domain, and then, clutter suppression is achieved for each separated range region. As a result, both problems of range ambiguity and range dependence are solved. Simulation results are provided to demonstrate the effectiveness of the proposed method.

[1]  Jingjing Huang,et al.  Frequency diverse array: Simulation and design , 2009, 2009 Loughborough Antennas & Propagation Conference.

[2]  Hong Wang,et al.  On adaptive spatial-temporal processing for airborne surveillance radar systems , 1994 .

[3]  Braham Himed,et al.  STAP with angle-Doppler compensation for bistatic airborne radars , 2002, Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322).

[4]  M. Seçmen,et al.  Frequency Diverse Array Antenna with Periodic Time Modulated Pattern in Range and Angle , 2007, 2007 IEEE Radar Conference.

[5]  H. D. Griffiths,et al.  Range-angle dependent waveform , 2010, 2010 IEEE Radar Conference.

[6]  Nathan A. Goodman Angle-dependent range sidelobes of MIMO waveforms , 2015, 2015 IEEE Radar Conference (RadarCon).

[7]  Ishuwa C. Sikaneta,et al.  A Generalization of DPCA Processing for Multichannel SAR/GMTI Radars , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Zheng Bao,et al.  Short-Range Clutter Suppression for Airborne Radar by Utilizing Prefiltering in Elevation , 2009, IEEE Geoscience and Remote Sensing Letters.

[9]  Wen-Qin Wang,et al.  Range-Angle Dependent Transmit Beampattern Synthesis for Linear Frequency Diverse Arrays , 2013, IEEE Transactions on Antennas and Propagation.

[10]  J. Tabrikian,et al.  Target Detection and Localization Using MIMO Radars and Sonars , 2006, IEEE Transactions on Signal Processing.

[11]  Joseph R. Guerci,et al.  Optimal and adaptive reduced-rank STAP , 2000, IEEE Trans. Aerosp. Electron. Syst..

[12]  L.J. Cimini,et al.  MIMO Radar with Widely Separated Antennas , 2008, IEEE Signal Processing Magazine.

[13]  Zheng Bao,et al.  STAP with medium PRF mode for non-side-looking airborne radar , 2000, IEEE Trans. Aerosp. Electron. Syst..

[14]  C.J. Baker,et al.  Multi-mission multi-mode waveform diversity , 2006, 2006 IEEE Conference on Radar.

[15]  Ishuwa C. Sikaneta,et al.  MIMO SAR Processing for Multichannel High-Resolution Wide-Swath Radars , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Murat Akçakaya,et al.  MIMO Radar Sensitivity Analysis for Target Detection , 2011, IEEE Transactions on Signal Processing.

[17]  P.M. Corbell,et al.  Forward-Looking Planar Array 3D-STAP using Space Time Illumination Patterns (STIP) , 2006, Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006..

[18]  Diego Cristallini,et al.  Strategies for sub-optimal air to air STAP in forward looking configuration , 2010, The 7th European Radar Conference.

[19]  William L. Melvin,et al.  Space-time adaptive radar performance in heterogeneous clutter , 2000, IEEE Trans. Aerosp. Electron. Syst..

[20]  Jun Jason Zhang,et al.  MIMO Radar with Frequency Diversity , 2009, 2009 International Waveform Diversity and Design Conference.

[21]  Satyabrata Sen PAPR-Constrained Pareto-Optimal Waveform Design for OFDM-STAP Radar , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Michael C. Wicks,et al.  Forward-looking radar GMTI benefits using a linear frequency diverse array , 2006 .

[23]  W.L. Melvin,et al.  Adaptive cancellation method for geometry-induced nonstationary bistatic clutter environments , 2007, IEEE Transactions on Aerospace and Electronic Systems.

[24]  Mark E. Oxley,et al.  Localised three-dimensional adaptive spatialtemporal processing for airborne radar , 2003 .

[25]  R. Klemm,et al.  Prospectives in STAP research , 2000, Proceedings of the 2000 IEEE Sensor Array and Multichannel Signal Processing Workshop. SAM 2000 (Cat. No.00EX410).

[26]  Joseph R. Guerci,et al.  Space-Time Adaptive Processing for Radar , 2003 .

[27]  C.J. Baker,et al.  Frequency diverse array radars , 2006, 2006 IEEE Conference on Radar.

[28]  T. Sarkar,et al.  Minimum norm property for the sum of the adaptive weights for a direct data domain least squares algorithm , 2006, IEEE Transactions on Antennas and Propagation.

[29]  W.L. Melvin,et al.  A STAP overview , 2004, IEEE Aerospace and Electronic Systems Magazine.

[30]  D. W. Bliss,et al.  GMTI MIMO radar , 2009, 2009 International Waveform Diversity and Design Conference.

[31]  Jacques G. Verly,et al.  Geometry-Induced Range-Dependence Compensation for Bistatic STAP with Conformal Arrays , 2011, IEEE Transactions on Aerospace and Electronic Systems.

[32]  R. Klemm,et al.  Doppler compensation in forward-looking STAP radar , 2001 .

[33]  T. F. Ayoub,et al.  Reduced-rank STAP for high PRF radar , 1999 .

[34]  Guisheng Liao,et al.  Performance improvement for monostatic clutter mitigation using space-time-range three-dimensional adaptive processing , 2011, Digit. Signal Process..

[35]  Wen-Qin Wang Space–Time Coding MIMO-OFDM SAR for High-Resolution Imaging , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Mark E. Oxley,et al.  Localized three-dimensional adaptive spatial-temporal processing for airborne radar , 2002, RADAR 2002.

[37]  M. Rangaswamy,et al.  Enhancing GMTI Performance in Non-Stationary Clutter Using 3D STAP , 2007, 2007 IEEE Radar Conference.

[38]  Mengdao Xing,et al.  Multichannel HRWS SAR Imaging Based on Range-Variant Channel Calibration and Multi-Doppler-Direction Restriction Ambiguity Suppression , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[39]  Diego Cristallini,et al.  A Robust Direct Data Domain Approach for STAP , 2012, IEEE Transactions on Signal Processing.

[40]  Wen-Qin Wang,et al.  Phased-MIMO Radar With Frequency Diversity for Range-Dependent Beamforming , 2013, IEEE Sensors Journal.

[41]  T. Sarkar,et al.  A deterministic least-squares approach to space-time adaptive processing (STAP) , 2001 .

[42]  Jeffrey L. Krolik,et al.  Joint space-time interpolation for distorted linear and bistatic array geometries , 2006, IEEE Transactions on Signal Processing.

[43]  I. Reed,et al.  Rapid Convergence Rate in Adaptive Arrays , 1974, IEEE Transactions on Aerospace and Electronic Systems.

[44]  Wen-Qin Wang,et al.  Transmit Subaperturing for Range and Angle Estimation in Frequency Diverse Array Radar , 2014, IEEE Transactions on Signal Processing.

[45]  Guisheng Liao,et al.  Range Ambiguous Clutter Suppression for Airborne FDA-STAP Radar , 2015, IEEE Journal of Selected Topics in Signal Processing.

[46]  Hugh D. Griffiths,et al.  Frequency Diverse MIMO Techniques for Radar , 2013, IEEE Transactions on Aerospace and Electronic Systems.