The origins of high hardening and low ductility in magnesium

Magnesium is a lightweight structural metal but it exhibits low ductility—connected with unusual, mechanistically unexplained, dislocation and plasticity phenomena—which makes it difficult to form and use in energy-saving lightweight structures. We employ long-time molecular dynamics simulations utilizing a density-functional-theory-validated interatomic potential, and reveal the fundamental origins of the previously unexplained phenomena. Here we show that the key 〈c + a〉 dislocation (where 〈c + a〉 indicates the magnitude and direction of slip) is metastable on easy-glide pyramidal II planes; we find that it undergoes a thermally activated, stress-dependent transition to one of three lower-energy, basal-dissociated immobile dislocation structures, which cannot contribute to plastic straining and that serve as strong obstacles to the motion of all other dislocations. This transition is intrinsic to magnesium, driven by reduction in dislocation energy and predicted to occur at very high frequency at room temperature, thus eliminating all major dislocation slip systems able to contribute to c-axis strain and leading to the high hardening and low ductility of magnesium. Enhanced ductility can thus be achieved by increasing the time and temperature at which the transition from the easy-glide metastable dislocation to the immobile basal-dissociated structures occurs. Our results provide the underlying insights needed to guide the design of ductile magnesium alloys.

[1]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[2]  L. Hector,et al.  First-principles core structures of edge and screw dislocations in Mg , 2014 .

[3]  J. Segurado,et al.  Origin of the reversed yield asymmetry in Mg-rare earth alloys at high temperature , 2015 .

[4]  T. Pollock Weight Loss with Magnesium Alloys , 2010, Science.

[5]  S. Agnew,et al.  Transmission electron microscopy investigation of dislocations in Mg and α-solid solution Mg-Li alloys , 2002 .

[6]  L. Hector,et al.  Atomistic study of edge and screw (c + a) dislocations in magnesium , 2010 .

[7]  H. Tonda,et al.  Effect of temperature and shear direction on yield stress by {11 $$\bar 2$$ 2}〈 $$\overline {11} $$ 23〉 slip in HCP metals23〉 slip in HCP metals , 2002 .

[8]  H. Tonda,et al.  Effect of temperature and shear direction on yield stress by {112̄2}〈1123〉 slip in HCP metals , 2002 .

[9]  S. Agnew,et al.  Transmission electron microscopy investigation of 〈c+a〉 dislocations in Mg and α-solid solution Mg-Li alloys , 2002 .

[10]  C. S. Hartley,et al.  Characterization and visualization of the lattice misfit associated with dislocation cores , 2005 .

[11]  P. Price Pyramidal glide and the formation and climb of dislocation loops in nearly perfect zinc crystals , 1960 .

[12]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[13]  D. Raabe,et al.  Basal and non-basal dislocation slip in Mg–Y , 2013 .

[14]  L. Kubin,et al.  Dislocation Mean Free Paths and Strain Hardening of Crystals , 2008, Science.

[15]  Hannes Jónsson,et al.  Systematic analysis of local atomic structure combined with 3D computer graphics , 1994 .

[16]  L. Hector,et al.  Quantitative prediction of solute strengthening in aluminium alloys. , 2010, Nature materials.

[17]  Hoover,et al.  Constant-pressure equations of motion. , 1986, Physical review. A, General physics.

[18]  H. Tonda,et al.  Non-Basal Slips in Magnesium and Magnesium-Lithium Alloy Single Crystals , 2000 .

[19]  W. S. Miller,et al.  Recent development in aluminium alloys for aerospace applications , 2000 .

[20]  D. Raabe,et al.  Ductility improvement of Mg alloys by solid solution: Ab initio modeling, synthesis and mechanical properties , 2014 .

[21]  Laurent Capolungo,et al.  On the strength of dislocation interactions and their effect on latent hardening in pure Magnesium , 2014 .

[22]  K. Ho,et al.  Non-basal slip systems in HCP metals and alloys: source mechanisms , 2001 .

[23]  M. Peach,et al.  THE FORCES EXERTED ON DISLOCATIONS AND THE STRESS FIELDS PRODUCED BY THEM , 1950 .

[24]  Y. Chou Interaction of Parallel Dislocations in a Hexagonal Crystal , 1962 .

[25]  S. Morozumi,et al.  {1122} Slip System in Magnesium , 1974 .

[26]  Z. Wu,et al.  Magnesium interatomic potential for simulating plasticity and fracture phenomena , 2015 .

[27]  L. Teutonico Dislocations in hexagonal crystals , 1970 .

[28]  M. K. Kulekci Magnesium and its alloys applications in automotive industry , 2008 .

[29]  W. Curtin,et al.  Brittle and ductile crack-tip behavior in magnesium , 2015 .

[30]  D. Raabe,et al.  The relation between ductility and stacking fault energies in Mg and Mg–Y alloys , 2012 .

[31]  J. Geng,et al.  The structure of 〈c + a〉 type dislocation loops in magnesium , 2014 .

[32]  K. T. Ramesh,et al.  Microcompression of single-crystal magnesium , 2010 .

[33]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[34]  K. Kumar,et al.  [0 0 0 1] Compression response at room temperature of single-crystal magnesium , 2012 .

[35]  H. Kitahara,et al.  Deformation Behavior of Magnesium Single Crystals in C-Axis Compression , 2007 .

[36]  P. Price Nonbasal Glide in Dislocation-Free Cadmium Crystals. I. The (101̄1) [12̄10] System , 1961 .

[37]  A. Karma,et al.  Crystal-melt interfacial free energies in hcp metals: A molecular dynamics study of Mg , 2006 .

[38]  S. Agnew Deformation mechanisms of magnesium alloys , 2012 .

[39]  A. Minor,et al.  Reducing deformation anisotropy to achieve ultrahigh strength and ductility in Mg at the nanoscale , 2013, Proceedings of the National Academy of Sciences.

[40]  J. Wang,et al.  The effect of hydrostatic pressure on the activation of non-basal slip in a magnesium alloy , 2009 .

[41]  G. Henkelman,et al.  Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points , 2000 .

[42]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .

[43]  U. F. Kocks Thermodynamics and kinetics of slip , 1975 .

[44]  M. Gibson,et al.  Microstructure and mechanical behaviour of an elevated temperature Mg-rare earth based alloy , 2009 .

[45]  K. Maruyama,et al.  The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys , 2003 .

[46]  W. S. Miller,et al.  Recent development in aluminium alloys for the automotive industry , 2000 .

[47]  J. Poirier,et al.  Etude de la montée des dislocations au moyen d'expériences de flu age par diffusion dans le magnésium: I. Mécanisme de déformation , 1973 .

[48]  G. Duscher,et al.  Direct observation of dislocation dissociation and Suzuki segregation in a Mg–Zn–Y alloy by aberration-corrected scanning transmission electron microscopy , 2013 .

[49]  J. Poirier,et al.  Etude de la montée des dislocations au moyen d'expériences de fluage par diffusion dans le magnésium , 1973 .

[50]  J. Stohr,et al.  Etude en microscopie electronique du glissement pyramidal {1122} 〈1123〉 dans le magnesium , 1972 .

[51]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[52]  S. Morozumi,et al.  {112̄2}〈1123〉 Slip system in magnesium , 1973 .

[53]  J. B. Adams,et al.  Modelling and Simulation in Materials Science and Engineering EAM potential for magnesium from quantum mechanical forces , 1996 .