The origins of high hardening and low ductility in magnesium
暂无分享,去创建一个
[1] S. Nosé. A molecular dynamics method for simulations in the canonical ensemble , 1984 .
[2] L. Hector,et al. First-principles core structures of edge and screw dislocations in Mg , 2014 .
[3] J. Segurado,et al. Origin of the reversed yield asymmetry in Mg-rare earth alloys at high temperature , 2015 .
[4] T. Pollock. Weight Loss with Magnesium Alloys , 2010, Science.
[5] S. Agnew,et al. Transmission electron microscopy investigation of dislocations in Mg and α-solid solution Mg-Li alloys , 2002 .
[6] L. Hector,et al. Atomistic study of edge and screw (c + a) dislocations in magnesium , 2010 .
[7] H. Tonda,et al. Effect of temperature and shear direction on yield stress by {11 $$\bar 2$$ 2}〈 $$\overline {11} $$ 23〉 slip in HCP metals23〉 slip in HCP metals , 2002 .
[8] H. Tonda,et al. Effect of temperature and shear direction on yield stress by {112̄2}〈1123〉 slip in HCP metals , 2002 .
[9] S. Agnew,et al. Transmission electron microscopy investigation of 〈c+a〉 dislocations in Mg and α-solid solution Mg-Li alloys , 2002 .
[10] C. S. Hartley,et al. Characterization and visualization of the lattice misfit associated with dislocation cores , 2005 .
[11] P. Price. Pyramidal glide and the formation and climb of dislocation loops in nearly perfect zinc crystals , 1960 .
[12] G. Henkelman,et al. A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .
[13] D. Raabe,et al. Basal and non-basal dislocation slip in Mg–Y , 2013 .
[14] L. Kubin,et al. Dislocation Mean Free Paths and Strain Hardening of Crystals , 2008, Science.
[15] Hannes Jónsson,et al. Systematic analysis of local atomic structure combined with 3D computer graphics , 1994 .
[16] L. Hector,et al. Quantitative prediction of solute strengthening in aluminium alloys. , 2010, Nature materials.
[17] Hoover,et al. Constant-pressure equations of motion. , 1986, Physical review. A, General physics.
[18] H. Tonda,et al. Non-Basal Slips in Magnesium and Magnesium-Lithium Alloy Single Crystals , 2000 .
[19] W. S. Miller,et al. Recent development in aluminium alloys for aerospace applications , 2000 .
[20] D. Raabe,et al. Ductility improvement of Mg alloys by solid solution: Ab initio modeling, synthesis and mechanical properties , 2014 .
[21] Laurent Capolungo,et al. On the strength of dislocation interactions and their effect on latent hardening in pure Magnesium , 2014 .
[22] K. Ho,et al. Non-basal slip systems in HCP metals and alloys: source mechanisms , 2001 .
[23] M. Peach,et al. THE FORCES EXERTED ON DISLOCATIONS AND THE STRESS FIELDS PRODUCED BY THEM , 1950 .
[24] Y. Chou. Interaction of Parallel Dislocations in a Hexagonal Crystal , 1962 .
[25] S. Morozumi,et al. {1122} Slip System in Magnesium , 1974 .
[26] Z. Wu,et al. Magnesium interatomic potential for simulating plasticity and fracture phenomena , 2015 .
[27] L. Teutonico. Dislocations in hexagonal crystals , 1970 .
[28] M. K. Kulekci. Magnesium and its alloys applications in automotive industry , 2008 .
[29] W. Curtin,et al. Brittle and ductile crack-tip behavior in magnesium , 2015 .
[30] D. Raabe,et al. The relation between ductility and stacking fault energies in Mg and Mg–Y alloys , 2012 .
[31] J. Geng,et al. The structure of 〈c + a〉 type dislocation loops in magnesium , 2014 .
[32] K. T. Ramesh,et al. Microcompression of single-crystal magnesium , 2010 .
[33] Steve Plimpton,et al. Fast parallel algorithms for short-range molecular dynamics , 1993 .
[34] K. Kumar,et al. [0 0 0 1] Compression response at room temperature of single-crystal magnesium , 2012 .
[35] H. Kitahara,et al. Deformation Behavior of Magnesium Single Crystals in C-Axis Compression , 2007 .
[36] P. Price. Nonbasal Glide in Dislocation-Free Cadmium Crystals. I. The (101̄1) [12̄10] System , 1961 .
[37] A. Karma,et al. Crystal-melt interfacial free energies in hcp metals: A molecular dynamics study of Mg , 2006 .
[38] S. Agnew. Deformation mechanisms of magnesium alloys , 2012 .
[39] A. Minor,et al. Reducing deformation anisotropy to achieve ultrahigh strength and ductility in Mg at the nanoscale , 2013, Proceedings of the National Academy of Sciences.
[40] J. Wang,et al. The effect of hydrostatic pressure on the activation of non-basal slip in a magnesium alloy , 2009 .
[41] G. Henkelman,et al. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points , 2000 .
[42] Jens Lothe John Price Hirth,et al. Theory of Dislocations , 1968 .
[43] U. F. Kocks. Thermodynamics and kinetics of slip , 1975 .
[44] M. Gibson,et al. Microstructure and mechanical behaviour of an elevated temperature Mg-rare earth based alloy , 2009 .
[45] K. Maruyama,et al. The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys , 2003 .
[46] W. S. Miller,et al. Recent development in aluminium alloys for the automotive industry , 2000 .
[47] J. Poirier,et al. Etude de la montée des dislocations au moyen d'expériences de flu age par diffusion dans le magnésium: I. Mécanisme de déformation , 1973 .
[48] G. Duscher,et al. Direct observation of dislocation dissociation and Suzuki segregation in a Mg–Zn–Y alloy by aberration-corrected scanning transmission electron microscopy , 2013 .
[49] J. Poirier,et al. Etude de la montée des dislocations au moyen d'expériences de fluage par diffusion dans le magnésium , 1973 .
[50] J. Stohr,et al. Etude en microscopie electronique du glissement pyramidal {1122} 〈1123〉 dans le magnesium , 1972 .
[51] S. Nosé. A unified formulation of the constant temperature molecular dynamics methods , 1984 .
[52] S. Morozumi,et al. {112̄2}〈1123〉 Slip system in magnesium , 1973 .
[53] J. B. Adams,et al. Modelling and Simulation in Materials Science and Engineering EAM potential for magnesium from quantum mechanical forces , 1996 .