Optically probing the asymmetric interlayer coupling in rhombohedral-stacked MoS2 bilayer

The interlayer coupling is emerging as a new parameter for tuning the physical properties of two-dimensional (2D) van der Waals materials. When two identical semiconductor monolayers are stacked with a twist angle, the periodic interlayer coupling modulation due to the moiré superlattice may endow exotic physical phenomena, such as moiré excitons and correlated electronic phases. To gain insight into these new phenomena, it is crucial to unveil the underlying coupling between atomic layers. Recently, the rhombohedral-stacked transition metal dichalcogenide (TMD) bilayer has attracted significant interest because of the emergence of an out-of-plane polarization from non-ferroelectric monolayer constituents. However, as a key parameter responsible for the physical properties, the interlayer coupling and its relationship with ferroelectricity in them remain elusive. Here we probe the asymmetric interlayer coupling between the conduction band of one layer and the valence band from the other layer in a 3R-MoS 2 bilayer, which can be understood as a result of a layer-dependent Berry phase winding. By performing optical spectroscopy in a dual-gated device, we show a type-II band alignment exists at K points in the 3R-MoS 2 bilayer. Furthermore, by unraveling various contributions to the band offset, we quantitatively determine the asymmetric interlayer coupling and spontaneous polarization in 3R-MoS 2 . Our results unveil the physical nature of stacking-induced ferroelectricity in TMD homostructures and have important implications for many-body states in the moiré superlattice of 2D semiconductors.

[1]  J. Shan,et al.  Semiconductor moiré materials , 2022, Nature Nanotechnology.

[2]  Kashif M. Awan,et al.  Spontaneous-polarization-induced photovoltaic effect in rhombohedrally stacked MoS2 , 2022, Nature Photonics.

[3]  A. Knorr,et al.  Excitonic theory of doping-dependent optical response in atomically thin semiconductors , 2022, 2201.02164.

[4]  Kenji Watanabe,et al.  Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides , 2021, Nature Nanotechnology.

[5]  S. Haigh,et al.  Interfacial ferroelectricity in marginally twisted 2D semiconductors , 2021, Nature Nanotechnology.

[6]  D. Smirnov,et al.  Exciton-polaron Rydberg states in monolayer MoSe2 and WSe2 , 2021, Nature Communications.

[7]  P. Schuck,et al.  Nanoscale lattice dynamics in hexagonal boron nitride moiré superlattices , 2021, Nature Communications.

[8]  Menghao Wu Two-Dimensional van der Waals Ferroelectrics: Scientific and Technological Opportunities. , 2021, ACS nano.

[9]  A. Millis,et al.  Quantum Criticality in Twisted Transition Metal Dichalcogenides , 2021 .

[10]  M. Parish,et al.  Electron-exciton interactions in the exciton-polaron problem , 2020, 2011.12667.

[11]  F. Guinea,et al.  Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride , 2020, Nature communications.

[12]  Kenji Watanabe,et al.  Stacking-engineered ferroelectricity in bilayer boron nitride , 2020, Science.

[13]  T. Taniguchi,et al.  Interfacial ferroelectricity by van der Waals sliding , 2020, Science.

[14]  A.H.MacDonald,et al.  $\Gamma$-Valley Transition-Metal-Dichalcogenide Moir\`e Bands , 2020, 2008.01735.

[15]  Kenji Watanabe,et al.  Strongly correlated Chern insulators in magic-angle twisted bilayer graphene , 2020, Nature.

[16]  Kenji Watanabe,et al.  Correlated electronic phases in twisted bilayer transition metal dichalcogenides , 2020, Nature Materials.

[17]  J. Maultzsch,et al.  Hybridized intervalley moiré excitons and flat bands in twisted WSe2 bilayers. , 2020, Nanoscale.

[18]  M. Glazov Optical properties of charged excitons in two-dimensional semiconductors. , 2020, The Journal of chemical physics.

[19]  C. Robert,et al.  Measurement of the spin-forbidden dark excitons in MoS2 and MoSe2 monolayers , 2020, Nature Communications.

[20]  M. Lukin,et al.  Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers , 2020, Nature Nanotechnology.

[21]  Thomas H. Bointon,et al.  Atomic reconstruction in twisted bilayers of transition metal dichalcogenides , 2019, Nature Nanotechnology.

[22]  Kenji Watanabe,et al.  Flat bands in twisted bilayer transition metal dichalcogenides , 2019, Nature Physics.

[23]  W. Yao,et al.  Giant magnetic field from moiré induced Berry phase in homobilayer semiconductors , 2019, National science review.

[24]  In Won Yeu,et al.  Ferroelectric switching in bilayer 3R MoS2 via interlayer shear mode driven by nonlinear phononics , 2019, Scientific Reports.

[25]  J. Y. Kwak,et al.  Optical control of the layer degree of freedom through Wannier–Stark states in polar 3R MoS2 , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[26]  M. Kastner,et al.  Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene , 2019, Science.

[27]  Kenji Watanabe,et al.  Observation of moiré excitons in WSe2/WS2 heterostructure superlattices , 2018, Nature.

[28]  A. MacDonald,et al.  Topological Insulators in Twisted Transition Metal Dichalcogenide Homobilayers. , 2018, Physical review letters.

[29]  G. Burkard,et al.  Tunable Berry curvature, valley and spin Hall effect in Bilayer MoS2 , 2018, NanoScience + Engineering.

[30]  E. Tutuc,et al.  Hubbard Model Physics in Transition Metal Dichalcogenide Moiré Bands. , 2018, Physical review letters.

[31]  Mit H. Naik,et al.  Ultraflatbands and Shear Solitons in Moiré Patterns of Twisted Bilayer Transition Metal Dichalcogenides. , 2018, Physical review letters.

[32]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[33]  E. Kaxiras,et al.  Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.

[34]  Di Xiao,et al.  Optical Selection Rule of Excitons in Gapped Chiral Fermion Systems. , 2017, Physical review letters.

[35]  D. K. Efimkin,et al.  Exciton-polarons in doped semiconductors in a strong magnetic field , 2017, Physical Review B.

[36]  Menghao Wu,et al.  Binary Compound Bilayer and Multilayer with Vertical Polarizations: Two-Dimensional Ferroelectrics, Multiferroics, and Nanogenerators. , 2017, ACS nano.

[37]  C. Robert,et al.  Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures , 2017, 1702.00323.

[38]  W. Yao,et al.  Interlayer coupling in commensurate and incommensurate bilayer structures of transition-metal dichalcogenides , 2016, 1610.00869.

[39]  Xiaodong Xu,et al.  Topological mosaics in moiré superlattices of van der Waals heterobilayers , 2016, Nature Physics.

[40]  Eugene Demler,et al.  Fermi polaron-polaritons in charge-tunable atomically thin semiconductors , 2016, Nature Physics.

[41]  Xiang Zhang,et al.  Atomically phase-matched second-harmonic generation in a 2D crystal , 2016, Light: Science & Applications.

[42]  Xiaodong Xu,et al.  Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. , 2015, Chemical Society reviews.

[43]  Yugui Yao,et al.  Intervalley coupling by quantum dot confinement potentials in monolayer transition metal dichalcogenides , 2014, 1410.6356.

[44]  R. Arita,et al.  Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. , 2014, Nature nanotechnology.

[45]  J. Geurts,et al.  Suris tetrons: possible spectroscopic evidence for four-particle optical excitations of a two-dimensional electron gas. , 2013, Physical review letters.

[46]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[47]  Xiaodong Li,et al.  Intrinsic electrical transport properties of monolayer silicene and MoS 2 from first principles , 2013, 1301.7709.

[48]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[49]  Ji Feng,et al.  Valley-selective circular dichroism of monolayer molybdenum disulphide , 2012, Nature Communications.

[50]  R. Bistritzer,et al.  Moiré bands in twisted double-layer graphene , 2010, Proceedings of the National Academy of Sciences.

[51]  P. Vargas,et al.  Flat bands in slightly twisted bilayer graphene: Tight-binding calculations , 2010, 1012.4320.

[52]  D. Sénéchal,et al.  Hubbard model on the triangular lattice: spiral order and spin liquid. , 2007, Physical review letters.