Probing Interlayer Interactions in Transition Metal Dichalcogenide Heterostructures by Optical Spectroscopy: MoS2/WS2 and MoSe2/WSe2.

We have applied optical absorption spectroscopy to investigate van der Waals heterostructures formed of pairs of monolayer transition metal dichalcogenide crystals, choosing MoS2/WS2 and MoSe2/WSe2 as test cases. In the heterostructure spectra, we observe a significant broadening of the excitonic transitions compared to the corresponding features in the isolated layers. The broadening is interpreted as a lifetime effect arising from decay of excitons initially created in either layer through charge transfer processes expected for a staggered band alignment. The measured spectral broadening of 20 meV - 35 meV implies lifetimes for charge separation of the near band-edge A and B excitons in the range of 20-35 fs. Higher-lying transitions exhibit still greater broadening.

[1]  B. L. Evans,et al.  The Band Edge Excitons in 2HMoS2 , 1976 .

[2]  Sefaattin Tongay,et al.  Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. , 2014, Nano letters.

[3]  Hsin-Ying Chiu,et al.  Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure. , 2014, ACS nano.

[4]  Timothy C. Berkelbach,et al.  Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. , 2014, Nano letters.

[5]  Martin Pumera,et al.  Transition metal dichalcogenides (MoS2, MoSe2, WS2 and WSe2) exfoliation technique has strong influence upon their capacitance , 2015 .

[6]  Yang Wu,et al.  Measurement of the optical conductivity of graphene. , 2008, Physical review letters.

[7]  K. Köhler,et al.  Resonant and nonresonant tunneling in GaAs/AlxGa1−xAs asymmetric double quantum wells , 1991 .

[8]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[9]  K. L. Sebastian,et al.  Resonance energy transfer from a dye molecule to graphene. , 2008, The Journal of chemical physics.

[10]  Eli Yablonovitch,et al.  Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides , 2014, Proceedings of the National Academy of Sciences.

[11]  Mauricio Terrones,et al.  Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides , 2013, Scientific Reports.

[12]  K. L. Sebastian,et al.  Long range resonance energy transfer from a dye molecule to graphene has (distance)(-4) dependence. , 2009, The Journal of chemical physics.

[13]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[14]  Yi Liu,et al.  Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures. , 2014, Nano letters.

[15]  Steven G. Louie,et al.  Quasiparticle and Excitonic Effects in the Optical Response of Nanotubes and Nanoribbons , 2007 .

[16]  Madan Dubey,et al.  Beyond Graphene: Progress in Novel Two-Dimensional Materials and van der Waals Solids , 2015 .

[17]  W. Tisdale,et al.  Reduced dielectric screening and enhanced energy transfer in single- and few-layer MoS2. , 2014, Nano letters.

[18]  A. Neto,et al.  Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides , 2013, 1305.6672.

[19]  M. Terrones,et al.  Spectroscopic Signatures for Interlayer Coupling in MoS 2-WSe , 2016 .

[20]  K. Ko'smider,et al.  Electronic properties of the MoS 2 -WS 2 heterojunction , 2012, 1212.0111.

[21]  Donal D. C. Bradley,et al.  Controlled Förster energy transfer in emissive polymer Langmuir-Blodgett structures , 2004 .

[22]  Aaron M. Jones,et al.  Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures , 2014, Nature Communications.

[23]  Chi Won Ahn,et al.  Large-area single-layer MoSe2 and its van der Waals heterostructures. , 2014, ACS nano.

[24]  S. Louie,et al.  Evolution of interlayer coupling in twisted molybdenum disulfide bilayers , 2014, Nature Communications.

[25]  Linyou Cao,et al.  Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2. , 2014, Nano letters.

[26]  Alexey Chernikov,et al.  Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS 2 , Mo S e 2 , WS 2 , and WS e 2 , 2014 .

[27]  A. Balocchi,et al.  Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2 , 2014, 1402.6009.

[28]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[29]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[30]  Yugui Yao,et al.  Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides , 2013, 1305.6089.

[31]  Steven G. Louie,et al.  Erratum: Optical Spectrum of MoS 2 : Many-Body Effects and Diversity of Exciton States [Phys. Rev. Lett. 111, 216805 (2013)] , 2015 .

[32]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[33]  Sefaattin Tongay,et al.  Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. , 2014, Nano letters.

[34]  U. Höfer,et al.  Femtosecond time-resolved studies of image-potential states at surfaces and interfaces of rare-gas adlayers , 2005 .

[35]  Timothy C. Berkelbach,et al.  Non-Hydrogenic Exciton Rydberg Series in Monolayer WS2 , 2014 .

[36]  Observation of an intrinsic bandgap and Landau level renormalization in graphene/boron-nitride heterostructures. , 2014, Nature communications.

[37]  Jian Zhou,et al.  Band offsets and heterostructures of two-dimensional semiconductors , 2013 .

[38]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[39]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[40]  L. Chu,et al.  Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. , 2012, ACS nano.

[41]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[42]  W. Wurth,et al.  Ultrafast electron dynamics at surfaces probed by resonant Auger spectroscopy , 2000 .

[43]  T. Taniguchi,et al.  Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure , 2013, Science.

[44]  T. Heinz,et al.  2‐Dimensional Transition Metal Dichalcogenides with Tunable Direct Band Gaps: MoS2(1–x)Se2x Monolayers , 2014, Advanced materials.

[45]  Arkady V. Krasheninnikov,et al.  Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles , 2013, 1308.5061.

[46]  Duncan W. McBranch,et al.  Charge-transfer range for photoexcitations in conjugated polymer/fullerene bilayers and blends , 1997 .

[47]  David B. Geohegan,et al.  Equally E ffi cient Interlayer Exciton Relaxation and Improved Absorption in Epitaxial and Nonepitaxial MoS 2 / WS 2 Heterostructures , 2015 .

[48]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[49]  R. Gorbachev Van der Waals heterostructures , 2014, Nature Reviews Methods Primers.

[50]  K. L. Shepard,et al.  Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices , 2013, Nature.

[51]  T. Korn,et al.  Low-temperature photocarrier dynamics in monolayer MoS2 , 2011, 1106.2951.

[52]  T. Taniguchi,et al.  Photoinduced doping in heterostructures of graphene and boron nitride. , 2014, Nature nanotechnology.

[53]  R. Wallace,et al.  Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors , 2013, 1308.0767.

[54]  Timothy C. Berkelbach,et al.  Observation of Excitonic Rydberg States in Monolayer MoS2 and WS2 by Photoluminescence Excitation Spectroscopy. , 2015, Nano letters.

[55]  Sefaattin Tongay,et al.  Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures. , 2014, Nature nanotechnology.