Probing Interlayer Interactions in Transition Metal Dichalcogenide Heterostructures by Optical Spectroscopy: MoS2/WS2 and MoSe2/WSe2.
暂无分享,去创建一个
Alexey Chernikov | Yilei Li | T. Heinz | A. Chernikov | Yilei Li | A. Rigosi | H. Hill | Tony F Heinz | Albert F Rigosi | Heather M Hill
[1] B. L. Evans,et al. The Band Edge Excitons in 2HMoS2 , 1976 .
[2] Sefaattin Tongay,et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. , 2014, Nano letters.
[3] Hsin-Ying Chiu,et al. Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure. , 2014, ACS nano.
[4] Timothy C. Berkelbach,et al. Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. , 2014, Nano letters.
[5] Martin Pumera,et al. Transition metal dichalcogenides (MoS2, MoSe2, WS2 and WSe2) exfoliation technique has strong influence upon their capacitance , 2015 .
[6] Yang Wu,et al. Measurement of the optical conductivity of graphene. , 2008, Physical review letters.
[7] K. Köhler,et al. Resonant and nonresonant tunneling in GaAs/AlxGa1−xAs asymmetric double quantum wells , 1991 .
[8] L. Lauhon,et al. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.
[9] K. L. Sebastian,et al. Resonance energy transfer from a dye molecule to graphene. , 2008, The Journal of chemical physics.
[10] Eli Yablonovitch,et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides , 2014, Proceedings of the National Academy of Sciences.
[11] Mauricio Terrones,et al. Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides , 2013, Scientific Reports.
[12] K. L. Sebastian,et al. Long range resonance energy transfer from a dye molecule to graphene has (distance)(-4) dependence. , 2009, The Journal of chemical physics.
[13] Qing Hua Wang,et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.
[14] Yi Liu,et al. Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures. , 2014, Nano letters.
[15] Steven G. Louie,et al. Quasiparticle and Excitonic Effects in the Optical Response of Nanotubes and Nanoribbons , 2007 .
[16] Madan Dubey,et al. Beyond Graphene: Progress in Novel Two-Dimensional Materials and van der Waals Solids , 2015 .
[17] W. Tisdale,et al. Reduced dielectric screening and enhanced energy transfer in single- and few-layer MoS2. , 2014, Nano letters.
[18] A. Neto,et al. Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides , 2013, 1305.6672.
[19] M. Terrones,et al. Spectroscopic Signatures for Interlayer Coupling in MoS 2-WSe , 2016 .
[20] K. Ko'smider,et al. Electronic properties of the MoS 2 -WS 2 heterojunction , 2012, 1212.0111.
[21] Donal D. C. Bradley,et al. Controlled Förster energy transfer in emissive polymer Langmuir-Blodgett structures , 2004 .
[22] Aaron M. Jones,et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures , 2014, Nature Communications.
[23] Chi Won Ahn,et al. Large-area single-layer MoSe2 and its van der Waals heterostructures. , 2014, ACS nano.
[24] S. Louie,et al. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers , 2014, Nature Communications.
[25] Linyou Cao,et al. Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2. , 2014, Nano letters.
[26] Alexey Chernikov,et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS 2 , Mo S e 2 , WS 2 , and WS e 2 , 2014 .
[27] A. Balocchi,et al. Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2 , 2014, 1402.6009.
[28] SUPARNA DUTTASINHA,et al. Van der Waals heterostructures , 2013, Nature.
[29] J. Wilson,et al. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .
[30] Yugui Yao,et al. Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides , 2013, 1305.6089.
[31] Steven G. Louie,et al. Erratum: Optical Spectrum of MoS 2 : Many-Body Effects and Diversity of Exciton States [Phys. Rev. Lett. 111, 216805 (2013)] , 2015 .
[32] J. Shan,et al. Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.
[33] Sefaattin Tongay,et al. Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. , 2014, Nano letters.
[34] U. Höfer,et al. Femtosecond time-resolved studies of image-potential states at surfaces and interfaces of rare-gas adlayers , 2005 .
[35] Timothy C. Berkelbach,et al. Non-Hydrogenic Exciton Rydberg Series in Monolayer WS2 , 2014 .
[36] Observation of an intrinsic bandgap and Landau level renormalization in graphene/boron-nitride heterostructures. , 2014, Nature communications.
[37] Jian Zhou,et al. Band offsets and heterostructures of two-dimensional semiconductors , 2013 .
[38] E. Johnston-Halperin,et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.
[39] A. Splendiani,et al. Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.
[40] L. Chu,et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. , 2012, ACS nano.
[41] Andre K. Geim,et al. Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[42] W. Wurth,et al. Ultrafast electron dynamics at surfaces probed by resonant Auger spectroscopy , 2000 .
[43] T. Taniguchi,et al. Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure , 2013, Science.
[44] T. Heinz,et al. 2‐Dimensional Transition Metal Dichalcogenides with Tunable Direct Band Gaps: MoS2(1–x)Se2x Monolayers , 2014, Advanced materials.
[45] Arkady V. Krasheninnikov,et al. Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles , 2013, 1308.5061.
[46] Duncan W. McBranch,et al. Charge-transfer range for photoexcitations in conjugated polymer/fullerene bilayers and blends , 1997 .
[47] David B. Geohegan,et al. Equally E ffi cient Interlayer Exciton Relaxation and Improved Absorption in Epitaxial and Nonepitaxial MoS 2 / WS 2 Heterostructures , 2015 .
[48] Jun Lou,et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.
[49] R. Gorbachev. Van der Waals heterostructures , 2014, Nature Reviews Methods Primers.
[50] K. L. Shepard,et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices , 2013, Nature.
[51] T. Korn,et al. Low-temperature photocarrier dynamics in monolayer MoS2 , 2011, 1106.2951.
[52] T. Taniguchi,et al. Photoinduced doping in heterostructures of graphene and boron nitride. , 2014, Nature nanotechnology.
[53] R. Wallace,et al. Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors , 2013, 1308.0767.
[54] Timothy C. Berkelbach,et al. Observation of Excitonic Rydberg States in Monolayer MoS2 and WS2 by Photoluminescence Excitation Spectroscopy. , 2015, Nano letters.
[55] Sefaattin Tongay,et al. Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures. , 2014, Nature nanotechnology.