Kinematics of Origami Structures with Smooth Folds

A kinematic model for origami with creased folds was presented in Chap. 2 and most existing models for origami also assume that folds are straight creases. However, such previous models are not intended for origami structures having non-negligible fold thickness or maximum fold curvature constraints based on material or structural limitations. In this chapter, we develop a model that captures the kinematic response of sheets having realistic folds of non-zero surface area and exhibiting higher-order geometric continuity, referred to as smooth folds. The geometry of smooth folds and the constraints on their associated kinematic variables are presented. We also address the implementation of the model in a computational environment and provide various representative examples.

[1]  Zhonghua Xi,et al.  Folding and unfolding origami tessellation by reusing folding path , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[2]  Su Jun Leow,et al.  Surface and contour-preserving origamic architecture paper pop-ups , 2014, IEEE Transactions on Visualization and Computer Graphics.

[3]  Erik D. Demaine,et al.  Recent Results in Computational Origami , 2002 .

[4]  W. Cheney,et al.  Numerical Analysis: Mathematics of Scientific Computing , 1991 .

[5]  C. R. Calladine,et al.  Theory of Shell Structures , 1983 .

[6]  Larry L. Howell,et al.  From Crease Pattern to Product: Considerations to Engineering Origami-Adapted Designs , 2014 .

[7]  Thomas Evans,et al.  Deployable and Foldable Arrays of Spatial Mechanisms , 2015 .

[8]  Rui Peng,et al.  Origami of thick panels , 2015, Science.

[9]  Larry L. Howell,et al.  An Approach for Understanding Action Origami as Kinematic Mechanisms , 2013 .

[10]  Ashley P. Thrall,et al.  Honeycomb core sandwich panels for origami-inspired deployable shelters: Multi-objective optimization for minimum weight and maximum energy efficiency , 2014 .

[11]  Kidong Park,et al.  Fabrication and characterization of self-folding thermoplastic sheets using unbalanced thermal shrinkage. , 2017, Soft matter.

[12]  Zhonghua Xi,et al.  Folding Rigid Origami With Closure Constraints , 2014 .

[13]  Tomohiro Tachi,et al.  Rigid-Foldable Thick Origami , 2010 .

[14]  Brian Sanders,et al.  Vibration and Flutter Characteristics of a Folding Wing , 2009 .

[15]  Jian S. Dai,et al.  From Origami to a New Class of Centralized 3-DOF Parallel Mechanisms , 2007 .

[16]  Vijay Kumar,et al.  A Simulator for Origami-Inspired Self-Reconfigurable Robots , 2011 .

[17]  Mary Frecker,et al.  Finite element analysis and validation of dielectric elastomer actuators used for active origami , 2014 .

[18]  Kazuko Fuchi,et al.  Topology optimization for the design of folding liquid crystal elastomer actuators. , 2015, Soft matter.

[19]  Ashley P. Thrall,et al.  Accordion shelters: A historical review of origami-like deployable shelters developed by the US military , 2014 .

[20]  Erik D. Demaine,et al.  Curved Crease Folding – a Review on Art, Design and Mathematics , 2011 .

[21]  Sergio Pellegrino,et al.  Origami Sunshield Concepts for Space Telescopes , 2013 .

[22]  Joan Lasenby,et al.  The kinematics of large rotations using Clifford algebra , 2000 .

[23]  Poonam V. Nimbolkar,et al.  Cylindrical Bending of Elastic Plates , 2015 .

[24]  Xiang Zhou,et al.  Design of three-dimensional origami structures based on a vertex approach , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  K. Kuribayashi,et al.  Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil , 2006 .

[26]  Gregory W. Reich,et al.  Origami Actuator Design and Networking Through Crease Topology Optimization , 2015 .

[27]  Larry L. Howell,et al.  A Preliminary Process for Origami-Adapted Design , 2015 .

[28]  Thomas C. Hull,et al.  A Mathematical Model for Non-Flat Origami , 2002 .

[29]  Larry L. Howell,et al.  Evaluating Compliant Hinge Geometries for Origami-Inspired Mechanisms , 2014 .

[30]  Tosiyasu L. Kunii,et al.  Bending and creasing virtual paper , 1994, IEEE Computer Graphics and Applications.

[31]  Levi H. Dudte,et al.  Geometric mechanics of curved crease origami. , 2012, Physical review letters.

[32]  Alejandro R. Diaz,et al.  Origami Design by Topology Optimization , 2013 .

[33]  Spencer P. Magleby,et al.  Accommodating Thickness in Origami-Based Deployable Arrays , 2013 .

[34]  Pedro M Reis,et al.  Transforming architectures inspired by origami , 2015, Proceedings of the National Academy of Sciences.

[35]  Bill Goodwine,et al.  A review of origami applications in mechanical engineering , 2016 .

[36]  Candace K. Chan,et al.  Origami lithium-ion batteries , 2014, Nature Communications.

[37]  Gregory W. Reich,et al.  Inverse Design of LCN Films for Origami Applications Using Topology Optimization , 2014 .

[38]  Paul R. Heyliger,et al.  Exact Solutions for Laminated Piezoelectric Plates in Cylindrical Bending , 1996 .

[39]  K. Eriksson,et al.  Airbag Folding Based on Origami Mathematics , 2006 .

[40]  Thomas C. Hull,et al.  Modelling the folding of paper into three dimensions using affine transformations , 2002 .

[41]  Jian S. Dai,et al.  Geometry and kinematic analysis of an origami-evolved mechanism based on artmimetics , 2009, 2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots.

[42]  B. Barsky,et al.  An Introduction to Splines for Use in Computer Graphics and Geometric Modeling , 1987 .

[43]  Ying Liu,et al.  Sequential self-folding of polymer sheets , 2017, Science Advances.

[44]  Ying Liu,et al.  Modelling of shape memory polymer sheets that self-fold in response to localized heating. , 2015, Soft matter.

[45]  Zhong You,et al.  Modelling rigid origami with quaternions and dual quaternions , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[46]  Dimitris C. Lagoudas,et al.  Origami-inspired active structures: a synthesis and review , 2014 .

[47]  Larry L. Howell,et al.  Creating Rigid Foldability to Enable Mobility of Origami-Inspired Mechanisms , 2016 .

[48]  Tomohiro Tachi,et al.  FREEFORM ORIGAMI TESSELLATIONS BY GENERALIZING RESCH'S PATTERNS , 2013 .

[49]  Spencer P. Magleby,et al.  Accommodating Thickness in Origami-Based Deployable Arrays , 2013 .

[50]  Kyu-Jin Cho,et al.  The Deformable Wheel Robot Using Magic-Ball Origami Structure , 2013 .

[51]  Shi-Min Hu,et al.  A geometric study of v-style pop-ups: theories and algorithms , 2011, SIGGRAPH 2011.

[52]  Jian S. Dai,et al.  Origami-inspired integrated planar-spherical overconstrained mechanisms , 2014 .

[53]  Tomohiro Tachi Geometric Considerations for the Design of Rigid Origami Structures , 2010 .

[54]  Nancy M. Amato,et al.  Using Motion Planning to Map Protein Folding Landscapes and Analyze Folding Kinetics of Known Native Structures , 2003, J. Comput. Biol..

[55]  Tomohiro Tachi,et al.  Origamizing Polyhedral Surfaces , 2010, IEEE Transactions on Visualization and Computer Graphics.

[56]  Leonid Ionov,et al.  Nature‐Inspired Stimuli‐Responsive Self‐Folding Materials , 2013 .

[57]  Larry L. Howell,et al.  Kinematic Representations of Pop-Up Paper Mechanisms , 2007 .

[58]  Z. You,et al.  Miura-Base Rigid Origami: Parameterizations of First-Level Derivative and Piecewise Geometries , 2013 .

[59]  Seung-Hyun Yoon,et al.  Constructing developable surfaces by wrapping cones and cylinders , 2015, Comput. Aided Des..

[60]  M. Frecker,et al.  Investigating the performance and properties of dielectric elastomer actuators as a potential means to actuate origami structures , 2014 .

[61]  Ergun Akleman,et al.  Design Tools for Patterned Self-Folding Reconfigurable Structures Based on Programmable Active Laminates , 2016 .

[62]  Larry L. Howell,et al.  A position analysis of coupled spherical mechanisms found in action origami , 2014 .

[63]  Dimitris C. Lagoudas,et al.  Analysis and Optimization of a Shape Memory Alloy-Based Self-Folding Sheet Considering Material Uncertainties , 2015 .

[64]  Zhonghua Xi,et al.  Plan folding motion for rigid self-folding machine via discrete domain sampling , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[65]  Simon D. Guest,et al.  Origami folding: A Structural Engineering Approach , 2011 .

[66]  Jian S. Dai,et al.  Four Motion Branches of an Origami Based Eight Bar Spatial Mechanism , 2013 .

[67]  Ergun Akleman,et al.  Insight for Practical Subdivision Modeling with Discrete Gauss-Bonnet Theorem , 2006, GMP.

[68]  Brian A. Barsky,et al.  Geometric Continuity of Parametric Curves , 1984 .

[69]  Ergun Akleman,et al.  Towards building smart self-folding structures , 2013, Comput. Graph..

[70]  N. Pagano,et al.  Exact Solutions for Composite Laminates in Cylindrical Bending , 1969 .

[71]  Larry L. Howell,et al.  Force–Deflection Modeling for Generalized Origami Waterbomb-Base Mechanisms , 2015 .

[72]  Dimitris C. Lagoudas,et al.  Folding patterns and shape optimization using SMA-based self-folding laminates , 2014, Smart Structures.

[73]  Yan Chen,et al.  Folding a Patterned Cylinder by Rigid Origami , 2011 .

[74]  Robert J. Lang,et al.  A computational algorithm for origami design , 1996, SCG '96.

[75]  Tomohiro Tachi,et al.  Simulation of Rigid Origami , 2006 .

[76]  Larry L. Howell,et al.  A Classification of Action Origami as Systems of Spherical Mechanisms , 2013 .

[77]  Olga Sorkine-Hornung,et al.  Animation‐Aware Quadrangulation , 2013, SGP '13.

[78]  Thomas C. Hull Project Origami: Activities for Exploring Mathematics , 2006 .

[79]  Tomohiro Tachi,et al.  Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials , 2015, Proceedings of the National Academy of Sciences.

[80]  E. Rothwell,et al.  An origami tunable metamaterial , 2012 .

[81]  Robert J. Lang Computational origami: from flapping birds to space telescopes , 2009, SCG '09.

[82]  Eitan Grinspun,et al.  Flexible Developable Surfaces , 2012, Comput. Graph. Forum.

[83]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[84]  H Tanaka,et al.  Programmable matter by folding , 2010, Proceedings of the National Academy of Sciences.

[85]  David Pohl,et al.  Engineered spacecraft deployables influenced by nature , 2009, Optical Engineering + Applications.

[86]  Mark Yim,et al.  Dielectric elastomer bender actuator applied to modular robotics , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[87]  Nancy M. Amato,et al.  A motion-planning approach to folding: from paper craft to protein folding , 2001, IEEE Transactions on Robotics and Automation.

[88]  Arthur Lebée,et al.  From Folds to Structures, a Review , 2015 .

[89]  Thomas C. Hull,et al.  Using origami design principles to fold reprogrammable mechanical metamaterials , 2014, Science.

[90]  Yoji Okabe,et al.  Designing of self-deploying origami structures using geometrically misaligned crease patterns , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[91]  Mark Schenk,et al.  Geometry of Miura-folded metamaterials , 2013, Proceedings of the National Academy of Sciences.

[92]  M. Dickey,et al.  Self-folding of polymer sheets using local light absorption , 2012 .

[93]  Larry L. Howell,et al.  Rigidly foldable origami gadgets and tessellations , 2015, Royal Society Open Science.

[94]  Tomohiro Tachi,et al.  Freeform Variations of Origami , 2010 .

[95]  Darren J. Hartl,et al.  Design and numerical analysis of an SMA mesh-based self-folding sheet , 2013 .

[96]  A. Pressley Elementary Differential Geometry , 2000 .

[97]  R. Lang,et al.  The science of origami , 2007 .

[98]  Qian Cheng,et al.  Folding paper-based lithium-ion batteries for higher areal energy densities. , 2013, Nano letters.

[99]  Robert J. Lang,et al.  Rigid origami vertices: conditions and forcing sets , 2016, J. Comput. Geom..

[100]  Tomohiro Tachi,et al.  Designing Freeform Origami Tessellations by Generalizing Resch's Patterns , 2013 .

[101]  John M. Sullivan,et al.  Curvatures of Smooth and Discrete Surfaces , 2007, 0710.4497.

[102]  Jeong Woo Han,et al.  All-solid-state, origami-type foldable supercapacitor chips with integrated series circuit analogues , 2014 .

[103]  Evin Gultepe,et al.  Origami Inspired Self-assembly of Patterned and Reconfigurable Particles , 2013, Journal of visualized experiments : JoVE.

[104]  Erik D. Demaine,et al.  Folding and Unfolding Linkages, Paper, and Polyhedra , 2000, JCDCG.

[105]  Darren J. Hartl,et al.  Design and Optimization of a Shape Memory Alloy-Based Self-Folding Sheet , 2013 .

[106]  Michael D. Dickey,et al.  Self-folding of polymer sheets using microwaves and graphene ink , 2015 .

[107]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[108]  Charlie C. L. Wang,et al.  Nonsmooth Developable Geometry for Interactively Animating Paper Crumpling , 2015, ACM Trans. Graph..

[109]  Kenneth C. Cheung,et al.  Origami interleaved tube cellular materials , 2014 .

[110]  Karthik Ramani,et al.  Reconfigurable Foldable Spatial Mechanisms and Robotic Forms Inspired by Kinetogami , 2012 .