The functional half-life of an mRNA depends on the ribosome spacing in an early coding region.

[1]  Xuemei Chen,et al.  Small RNAs and their roles in plant development. , 2009, Annual review of cell and developmental biology.

[2]  D. Court,et al.  Recombineering: a homologous recombination-based method of genetic engineering , 2009, Nature Protocols.

[3]  Kim Sneppen,et al.  Ribosome collisions and translation efficiency: optimization by codon usage and mRNA destabilization. , 2008, Journal of molecular biology.

[4]  H. Čelešnik,et al.  The bacterial enzyme RppH triggers messenger RNA degradation by 5′ pyrophosphate removal , 2008, Nature.

[5]  N. Costantino,et al.  Multicopy Plasmid Modification with Phage λ Red Recombineering , 2007 .

[6]  L. Bossi,et al.  A small RNA downregulates LamB maltoporin in Salmonella , 2007, Molecular microbiology.

[7]  H. Čelešnik,et al.  Initiation of RNA decay in Escherichia coli by 5' pyrophosphate removal. , 2007, Molecular cell.

[8]  G. Storz,et al.  Modulating the outer membrane with small RNAs. , 2006, Genes & development.

[9]  P. Valentin‐Hansen,et al.  Regulation of ompA mRNA stability: the role of a small regulatory RNA in growth phase‐dependent control , 2005, Molecular microbiology.

[10]  J. Belasco,et al.  Lost in translation: the influence of ribosomes on bacterial mRNA decay. , 2005, Genes & development.

[11]  Robert T Sauer,et al.  Ribosome rescue: tmRNA tagging activity and capacity in Escherichia coli , 2005, Molecular microbiology.

[12]  Marc Dreyfus,et al.  AU-Rich Sequences within 5′ Untranslated Leaders Enhance Translation and Stabilize mRNA in Escherichia coli , 2005, Journal of bacteriology.

[13]  Stanley N Cohen,et al.  Global analysis of Escherichia coli RNA degradosome function using DNA microarrays. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[14]  D. Court,et al.  In vivo recombineering of bacteriophage λ by PCR fragments and single-strand oligonucleotides , 2004 .

[15]  Marc Dreyfus,et al.  The Poly(A) Tail of mRNAs Bodyguard in Eukaryotes, Scavenger in Bacteria , 2002, Cell.

[16]  Sidney R. Kushner,et al.  mRNA Decay in Escherichia coli Comes of Age , 2002, Journal of bacteriology.

[17]  I. Lemm,et al.  Regulation of c-myc mRNA Decay by Translational Pausing in a Coding Region Instability Determinant , 2002, Molecular and Cellular Biology.

[18]  D. Steege Emerging features of mRNA decay in bacteria. , 2000, RNA.

[19]  G. Mackie Ribonuclease E is a 5′-end-dependent endonuclease , 1998, Nature.

[20]  A. Gultyaev,et al.  Programmed cell death by hok/sok of plasmid R1: processing at the hok mRNA 3'-end triggers structural rearrangements that allow translation and antisense RNA binding. , 1997, Journal of molecular biology.

[21]  R. Sauer,et al.  Role of a Peptide Tagging System in Degradation of Proteins Synthesized from Damaged Messenger RNA , 1996, Science.

[22]  M. Sørensen,et al.  Synthesis of proteins in Escherichia coli is limited by the concentration of free ribosomes. Expression from reporter genes does not always reflect functional mRNA levels. , 1993, Journal of molecular biology.

[23]  M. Dreyfus,et al.  Interdependence of translation, transcription and mRNA degradation in the lacZ gene. , 1992, Journal of molecular biology.

[24]  G. Stormo,et al.  Translation initiation in Escherichia coli: sequences within the ribosome‐binding site , 1992, Molecular microbiology.

[25]  M. Sørensen,et al.  Absolute in vivo translation rates of individual codons in Escherichia coli. The two glutamic acid codons GAA and GAG are translated with a threefold difference in rate. , 1991, Journal of molecular biology.

[26]  C. Petersen Multiple determinants of functional mRNA stability: sequence alterations at either end of the lacZ gene affect the rate of mRNA inactivation , 1991, Journal of bacteriology.

[27]  J. Martinussen,et al.  Mechanism of post‐segregational killing by the hoklsok system of plasmid R1: sok antisense RNA regulates formation of a hok mRNA species correlated with killing of plasmid‐free cells , 1990, Molecular microbiology.

[28]  C. Petersen The functional stability of the lacZ transcript is sensitive towards sequence alterations immediately downstream of the ribosome binding site , 1987, Molecular and General Genetics MGG.

[29]  D. Turner,et al.  Improved free-energy parameters for predictions of RNA duplex stability. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[30]  D. Kennell,et al.  Evidence that the 5' end of lac mRNA starts to decay as soon as it is synthesized , 1985, Journal of bacteriology.

[31]  J. Belasco,et al.  Growth-rate dependent regulation of mRNA stability in Escherichia coli , 1984, Nature.

[32]  J. Friesen,et al.  Functional mRNA half lives in E. coli , 1978, Molecular and General Genetics MGG.

[33]  D. Apirion Degradation of RNA in Escherichia coli , 1973, Molecular and General Genetics MGG.

[34]  E. Craig,et al.  Decay rates of different mRNA in E. coli and models of decay. , 1972, Nature: New biology.

[35]  M. Jacquet,et al.  Initiation, elongation and inactivation of lac messenger RNA in Escherichia coli studied by measurement of its β-galactosidase synthesizing capacity in vivo☆ , 1971 .

[36]  Reinhard Wolf,et al.  Coding-Sequence Determinants of Gene Expression in Escherichia coli , 2009 .

[37]  J. Belasco,et al.  A 5'-terminal stem-loop structure can stabilize mRNA in Escherichia coli. , 1992, Genes & development.

[38]  D. Apirion Degradation of RNA in Escherichia coli. A hypothesis. , 1973, Molecular & general genetics : MGG.