Kendall distribution functions and associative copulas

In this paper, we prove that any Kendall distribution function is the Kendall distribution function of some associative copula. We use this result to show that each equivalence class of the relation ''to have the same Kendall distribution function as'' defined on the set of copulas contains a unique associative representative.

[1]  Radko Mesiar,et al.  Uniform approximation of associative copulas by strict and non-strict copulas , 2001 .

[2]  Bernard De Baets,et al.  Additive decomposition of fuzzy pre-orders , 2007, Fuzzy Sets Syst..

[3]  R. Mesiar,et al.  Aggregation operators: properties, classes and construction methods , 2002 .

[4]  Radko Mesiar,et al.  Triangular Norms , 2000, Trends in Logic.

[5]  Bernard De Baets,et al.  On the compositional characterization of complete fuzzy pre-orders , 2008, Fuzzy Sets Syst..

[6]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[7]  Bernard De Baets,et al.  Transitivity Bounds in Additive Fuzzy Preference Structures , 2007, IEEE Transactions on Fuzzy Systems.

[8]  An application of Kendall distributions and alternative dependence measures: SPX vs. VIX , 2008 .

[9]  Piotr Mikusiński,et al.  Shuffles of Min. , 1992 .

[10]  Bernard De Baets,et al.  On the cycle-transitive comparison of artificially coupled random variables , 2008, Int. J. Approx. Reason..

[11]  Christian Genest,et al.  Copules archimédiennes et families de lois bidimensionnelles dont les marges sont données , 1986 .

[12]  José Juan Quesada-Molina,et al.  Distribution functions of copulas: a class of bivariate probability integral transforms , 2001 .

[13]  M. J. Frank,et al.  Associative Functions: Triangular Norms And Copulas , 2006 .

[14]  Joan Torrens,et al.  Copula-like operations on finite settings , 2005, IEEE Transactions on Fuzzy Systems.

[15]  R. Mesiar,et al.  Aggregation operators: new trends and applications , 2002 .

[16]  Carles M. Cuadras,et al.  Distributions With Given Marginals and Statistical Modelling , 2002 .

[17]  José Juan Quesada-Molina,et al.  Kendall distribution functions , 2003 .

[18]  C. Genest,et al.  Statistical Inference Procedures for Bivariate Archimedean Copulas , 1993 .

[19]  R. Nelsen An Introduction to Copulas , 1998 .

[20]  Josef Štěpán,et al.  Distributions with given marginals and moment problems , 1997 .

[21]  Christian Genest,et al.  A Stochastic Ordering Based on a Decomposition of Kendall’s Tau , 1997 .

[22]  Roger B. Nelsen,et al.  The Bertino Family of Copulas , 2002 .