Gate quality of ex situ deposited Al/SiNx:H/n-In0.53Ga0.47As devices after rapid thermal annealing

Ex situ deposited SiNx:H/In0.53Ga0.47As metal-insulator-semiconductor devices, with a minimum of interface state density of 3.5 × 1011 eV-1 cm-2 have been obtained by electron cyclotron resonance plasma method at a low substrate temperature (200 °C), after a rapid thermal annealing treatment. The effects of annealing temperature on interfacial and bulk electrical properties have been analysed using the C - V high-low frequency method and I - V measurements. The results show that, up to 600 °C, the annealing procedure gradually improves the interface properties of the devices. The frequency dispersion, the hysteresis and the interface trap density diminish, while the resistivity and the electrical breakdown field of the insulator film increase up to values of 8 × 1015 cm and 4 MV cm-1, respectively. We explain this behaviour in terms of the thermal relaxation and the reconstruction of the SiNx:H lattice and its interface with the In0.53Ga0.47As. At higher annealing temperatures, a sharp degradation of the structure occurs.

[1]  I. Mártil,et al.  Thermally induced improvements on SiNx:H/InP devices , 1999 .

[2]  I. Mártil,et al.  Thermal stability of a-SiNx:H films deposited by plasma electron cyclotron resonance , 1999 .

[3]  I. Mártil,et al.  Low interface trap density in rapid thermally annealed Al/SiNx:H/InP metal–insulator–semiconductor devices , 1999 .

[4]  H. Morkoç,et al.  Interface characterization of Si3N4/Si/GaAs heterostructures after high temperature annealing , 1998 .

[5]  H. Morkoç,et al.  Si3N4 on GaAs by direct electron cyclotron resonance plasma assisted nitridation of Si layer in Si/GaAs structure , 1998 .

[6]  I. Mártil,et al.  Deposition of SiNx:H thin films by the electron cyclotron resonance and its application to Al/SiNx:H/Si structures , 1998 .

[7]  I. Mártil,et al.  The influence of film properties on the electrical characteristics of metal - insulator - semiconductor devices , 1997 .

[8]  J. Swanson,et al.  Comparative measurements of the electron emission behavior of Si3N4-InGaAs interfaces prepared by remote and direct PECVD , 1996 .

[9]  H. Morkoç,et al.  Interface properties of Si3N4Si/n-GaAs metal-msulator-semiconductor structure using a Si interlayer , 1996 .

[10]  A. Khachaturyan Long-range order parameter in field model of solidification , 1996 .

[11]  Hadis Morkoç,et al.  A review of III-V semiconductor based metal-insulator- semiconductor structures and devices , 1993 .

[12]  H. Morkoç,et al.  Characteristics of in-situ deposited Si3N4⧸Si⧸In0.53Ga0.47As metal-insulator-semiconductor structures , 1993 .

[13]  H. Morkoç,et al.  Gate quality Si3N4/Si/n‐In0.53Ga0.47As metal‐insulator‐semiconductor capacitors , 1992 .

[14]  H. Morkoç,et al.  Investigations of the Si3N4/Si/n‐GaAs insulator‐semiconductor interface with low interface trap density , 1992 .

[15]  E. Ohue,et al.  Characterization of InGaAs surface passivation structure having an ultrathin Si interface control layer , 1990 .

[16]  Hideki Hasegawa,et al.  Control Of Insulator-Semiconductor Interfaces Of InP And InGaAs For Surface Passivation And Misfet Fabrication , 1989, Other Conferences.