Understanding the Infinite

Part 1 Introduction. Part 2 Infinity, mathematics' persistent suitor: incommensurable lengths, irrational numbers Newton and Leibniz go forward, and faith will come to you vibrating strings infinity spurned infinity embraced. Part 3 Sets of points: infinite sizes infinite orders integration absolute versus transfinite paradoxes. Part 4 What are sets?: Russell Cantor appendix A - letter from Cantor to Jourdain, 9 July 1904 appendix B - on an elementary question of set theory. Part 5 The axiomatization of set theory: the axiom of choice the axiom of replacement definiteness and Skolem's paradox Zermelo go forward, and faith will come to you. Part 6 Knowing the infinite: what do we know? what can we know? getting from here to there. Part 7 Leaps of faith: intuition physics modality second-order logic. Part 8 From here to infinity: who needs self-evidence? picturing the infinite the finite mathematics of indefinitely large size the theory of zillions. Part 9 Extrapolations: natural models many models one model or many? sets and classes natural axioms second thoughts schematic and generalizable variables.

[1]  Gregory H. Moore Beyond first-order logic: the historical interplay between mathematical logic and axiomatic set theory , 1980 .

[2]  Imre Lakatos,et al.  Cauchy and the continuum , 1978 .

[3]  Haskell B. Curry Outlines of a formalist philosophy of mathematics , 1951 .

[4]  Penelope Maddy,et al.  Believing the axioms. I , 1988, Journal of Symbolic Logic.

[5]  Jan Mycielski,et al.  Locally finite theories , 1986, Journal of Symbolic Logic.

[6]  Thomas Hawkins Lebesgue's theory of integration: Its origins and development , 1971 .

[7]  K. Volkert Die Geschichte der pathologischen Funktionen — Ein Beitrag zur Entstehung der mathematischen Methodologie , 1987 .

[8]  Dear Russell, dear Jourdain , 1977 .

[9]  Herbert B. Enderton,et al.  A mathematical introduction to logic , 1972 .

[10]  Jamie Tappenden,et al.  The liar and sorites paradoxes: Toward a unified treatment , 1993 .

[11]  Russell's logicist definitions of numbers, 1898–1913: chronology and significance , 1987 .

[12]  B. Russell,et al.  Introduction to Mathematical Philosophy , 1920, The Mathematical Gazette.

[13]  Charles McCarty,et al.  Intuitionism: An introduction to a seminar , 1983, J. Philos. Log..

[14]  C. Parsons Ontology and Mathematics , 1971 .

[15]  Penelope Maddy,et al.  Realism in mathematics , 1991 .

[16]  Michael Hallett Physicalism, Reductionism & Hilbert , 1990 .

[17]  J. Heijenoort From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .

[18]  Henk J. M. Bos,et al.  Differentials, higher-order differentials and the derivative in the Leibnizian calculus , 1974 .

[19]  E. Zermelo Neuer Beweis für die Möglichkeit einer Wohlordnung , 1907 .

[20]  A. Fraenkel,et al.  Zu den Grundlagen der Cantor-Zermeloschen Mengenlehre , 1922 .

[21]  B Rang,et al.  Zermelo's discovery of the “Russell Paradox” , 1981 .

[22]  M. Dummett The Philosophical Basis of Intuitionistic Logic , 1975 .

[23]  Umberto Bottazzini,et al.  The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass , 1986 .

[24]  A. Fraenkel Axiomatische Theorie der geordneten Mengen. (Untersuchungen über die Grundlagen der Mengenlehre. II.) , 2022 .

[25]  Stewart Shapiro,et al.  Second-order languages and mathematical practice , 1985, Journal of Symbolic Logic.

[26]  Gesammelte Abhandlungen , 1906, Nature.

[27]  Solomon Feferman,et al.  Reflecting on incompleteness , 1991, Journal of Symbolic Logic.

[28]  W. Goldfarb,et al.  Herbrand's Theorem and the Incompleteness of Arithmetic , 1990 .

[29]  D. Hilbert Die grundlagen der mathematik , 1928 .

[30]  A. S. Yessenin-Volpin,et al.  The Ultra-Intuitionistic Criticism and the Antitraditional Program for Foundations of Mathematics , 1970 .

[31]  Michael Hallett Cantorian set theory and limitation of size , 1984 .

[32]  Christopher Hookway Collected Papers on Mathematics, Logic and Philosophy , 1985 .

[33]  J. Neumann Eine Axiomatisierung der Mengenlehre. , 1925 .

[34]  Mycielski Finitistic real analysis , 1980 .

[35]  Robert L. Vaught,et al.  Axiomatizability by a schema , 1968, Journal of Symbolic Logic.

[36]  R. Montague,et al.  Set Theory and Higher-Order Logic , 1965 .

[37]  P. Mancosu The metaphysics of the calculus: A foundational debate in the Paris Academy of Sciences, 1700–1706 , 1989 .

[38]  R. Dedekind Stetigkeit und irrationale Zahlen , 2022 .

[39]  Philip Kitcher,et al.  The nature of mathematical knowledge , 1985 .

[40]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[41]  Hilary Putnam,et al.  Mathematics without Foundations , 1967 .

[42]  Peter Aczel,et al.  Non-well-founded sets , 1988, CSLI lecture notes series.

[43]  Joseph W Dauben,et al.  Abraham Robinson and nonstandard analysis: history, philosophy, and foundations of mathematics , 1988 .

[44]  M. Dummett Truth and other enigmas , 1978 .

[45]  Roger North,et al.  The Mathematical Career of Pierre de Fermat , 1974, The Mathematical Gazette.

[46]  J. Dauben The trigonometric background to Georg Cantor's theory of sets , 1971 .

[47]  Stewart Shapiro Second-order Logic, Foundations, and Rules , 1990 .

[48]  Jan Mycielski The meaning of pure mathematics , 1989, J. Philos. Log..

[49]  Penelope Maddy,et al.  Indispensability and Practice , 1992 .

[50]  A. P. Youschkevitch The concept of function up to the middle of the 19th century , 1976, Archive for History of Exact Sciences.

[51]  D. Thompson,et al.  A History of Greek Mathematics , 1922, Nature.

[52]  Solomon Feferman,et al.  Theories of Finite Type Related to Mathematical Practice , 1977 .

[53]  M. Kline Mathematical Thought from Ancient to Modern Times , 1972 .

[54]  Heinz-Dieter Ebbinghaus Axiomatizing set theory , 1976 .

[55]  Jan Mycielski Quantifier-free versions of first order logic and their psychological significance , 1992, J. Philos. Log..

[56]  M. Beeson Foundations of Constructive Mathematics , 1985 .

[57]  E. Casari Logic and the Foundations of Mathematics , 1981 .

[58]  Barkley Rosser Review: A. Malcev, Untersuchungen aus dem Gebiete der Mathematischen Logik , 1937 .

[59]  Andrzej Zarach Unions of Zf--Models Which are Themselves Zf--Models , 1982 .

[60]  UNDERSTANDING ZERO AND INFINITY IN THE EARLY SCHOOL YEARS , 1983 .

[61]  Jan Mycielski,et al.  Analysis without actual infinity , 1981, Journal of Symbolic Logic.

[62]  G. Landini New Evidence concerning Russell's Substitutional Theory of Classes , 1989 .

[63]  H. Edwards Kronecker's place in history , 1988 .

[64]  G. Boolos,et al.  The Iterative Conception of Set , 1971 .

[65]  D. Hilbert,et al.  Geometry and the Imagination , 1953 .

[66]  Abraham Adolf Fraenkel Einleitung in die Mengenlehre , 1919 .

[67]  C. Smorynski The Incompleteness Theorems , 1977 .

[68]  Bertrand Russell,et al.  The Autobiography of Bertrand Russell , 1950 .

[69]  B. Russell,et al.  On Some Difficulties in the Theory of Transfinite Numbers and Order Types. , 1906 .

[70]  Alonzo Church,et al.  Introduction to Mathematical Logic , 1991 .

[71]  E. Zermelo Beweis, daß jede Menge wohlgeordnet werden kann , 1904 .

[72]  Penelope Maddy The Roots of Contemporary Platonism , 1989, J. Symb. Log..

[73]  Alexander George Skolem and the löwenheim-skolem theorem: a case study of the philosophical significance of mathematical results , 1985 .

[74]  S. Shapiro Foundations Without Foundationalism , 1991 .

[75]  Stephen Cole Kleene,et al.  The work of Kurt Gödel , 1976, Journal of Symbolic Logic.

[76]  John von Neumann,et al.  Über die Definition durch transfinite Induktion und verwandte Fragen der allgemeinen Mengenlehre , 1928 .

[77]  K. Gödel Consistency of the Continuum Hypothesis. (AM-3) , 1940 .

[78]  A. Levy The Definability of Cardinal Numbers , 1969 .

[79]  Paul Bernays,et al.  A System of Axiomatic Set Theory , 1976 .

[80]  Geoffrey Hellman,et al.  Mathematics without Numbers: Towards a Modal-Structural Interpretation , 1989 .

[81]  L. Brouwer,et al.  HISTORICAL BACKGROUND, PRINCIPLES AND METHODS OF INTUITIONISM , 1975 .

[82]  Hao Wang,et al.  From Mathematics to Philosophy. , 1975 .

[83]  A. Levy On Von Neumann's Axiom System for Set Theory , 1968 .

[84]  Gregory H. Moore The Roots of Russell's Paradox , 1988 .

[85]  H. Stein,et al.  Logos, logic, and logistiké: some philosophical remarks on nineteenth-century transformation of mathematics , 1988 .

[86]  D. Rödding Primitiv-Rekursive Funktionen Über Einem Bereich Endlicher Mengen , 1968 .

[87]  Dmitri Mirimanoff,et al.  Remarques sur la théorie des ensembles et les antinomies cantoriennes. II , 1920 .

[88]  Robert L. Vaught Set Theory: An Introduction , 1985 .

[89]  Virginia Klenk Intended models and the Löwenheim-Skolem theorem , 1976, J. Philos. Log..

[90]  Charles Parsons,et al.  Mathematics in Philosophy: Selected Essays , 1984 .

[91]  M. Makkai Admissible Sets and Infinitary Logic , 1977 .

[92]  E. Zermelo Grundlagen einer allgemeinen Theorie der mathematischen Satzsysteme , 1935 .

[93]  Gottlob Frege,et al.  Philosophical and mathematical correspondence , 1980 .

[94]  N. Cocchiarella Mathematical knowledge , 1978 .

[95]  A. Urquhart Russell’s zigzag path to the ramified theory of types , 1988 .

[96]  B. Russell Mathematical Logic as Based on the Theory of Types , 1908 .

[97]  A. R.,et al.  The Works of George Berkeley, Bishop of Cloyne , 1949, Nature.

[98]  E. Zermelo Untersuchungen über die Grundlagen der Mengenlehre. I , 1908 .

[99]  F. A. Medvedev Scenes from the History of Real Functions , 1991 .

[100]  D. Knuth Surreal numbers : how two ex-students turned on to pure mathematics and found total happiness : a mathematical novelette , 1974 .

[101]  M. Detlefsen Hilbert's program , 1986 .

[102]  Mary Tiles,et al.  Georg Cantor: His Mathematics and Philosophy of the Infinite. , 1982 .

[103]  H. Weyl Mathematics and Logic , 1946 .

[104]  Gregory H. Moore,et al.  Burali-Forti's paradox: A reappraisal of its origins , 1981 .

[105]  Gregory H. Moore The emergence of first-order logic , 1988 .

[106]  Ivor Grattan-Guinness,et al.  From the calculus to set theory, 1630-1910 : an introductory history , 1985 .

[107]  Wilhelm Ackermann,et al.  Die Widerspruchsfreiheit der allgemeinen Mengenlehre , 1937 .

[108]  H. Putnam What is mathematical truth , 1975 .

[109]  G. Landini Russell's substitutional theory of classes and relations , 1987 .

[110]  Carl B. Boyer The concepts of the calculus : a critical and historical discussion of the derivative and the integral , 1939 .

[111]  Gregory H. Moore The origins of Zermelo's axiomatization of set theory , 1978, J. Philos. Log..

[112]  Crispin Wright,et al.  Skolem and the Skeptic , 1985 .