Understanding the Infinite
暂无分享,去创建一个
[1] Gregory H. Moore. Beyond first-order logic: the historical interplay between mathematical logic and axiomatic set theory , 1980 .
[2] Imre Lakatos,et al. Cauchy and the continuum , 1978 .
[3] Haskell B. Curry. Outlines of a formalist philosophy of mathematics , 1951 .
[4] Penelope Maddy,et al. Believing the axioms. I , 1988, Journal of Symbolic Logic.
[5] Jan Mycielski,et al. Locally finite theories , 1986, Journal of Symbolic Logic.
[6] Thomas Hawkins. Lebesgue's theory of integration: Its origins and development , 1971 .
[7] K. Volkert. Die Geschichte der pathologischen Funktionen — Ein Beitrag zur Entstehung der mathematischen Methodologie , 1987 .
[8] Dear Russell, dear Jourdain , 1977 .
[9] Herbert B. Enderton,et al. A mathematical introduction to logic , 1972 .
[10] Jamie Tappenden,et al. The liar and sorites paradoxes: Toward a unified treatment , 1993 .
[11] Russell's logicist definitions of numbers, 1898–1913: chronology and significance , 1987 .
[12] B. Russell,et al. Introduction to Mathematical Philosophy , 1920, The Mathematical Gazette.
[13] Charles McCarty,et al. Intuitionism: An introduction to a seminar , 1983, J. Philos. Log..
[14] C. Parsons. Ontology and Mathematics , 1971 .
[15] Penelope Maddy,et al. Realism in mathematics , 1991 .
[16] Michael Hallett. Physicalism, Reductionism & Hilbert , 1990 .
[17] J. Heijenoort. From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .
[18] Henk J. M. Bos,et al. Differentials, higher-order differentials and the derivative in the Leibnizian calculus , 1974 .
[19] E. Zermelo. Neuer Beweis für die Möglichkeit einer Wohlordnung , 1907 .
[20] A. Fraenkel,et al. Zu den Grundlagen der Cantor-Zermeloschen Mengenlehre , 1922 .
[21] B Rang,et al. Zermelo's discovery of the “Russell Paradox” , 1981 .
[22] M. Dummett. The Philosophical Basis of Intuitionistic Logic , 1975 .
[23] Umberto Bottazzini,et al. The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass , 1986 .
[24] A. Fraenkel. Axiomatische Theorie der geordneten Mengen. (Untersuchungen über die Grundlagen der Mengenlehre. II.) , 2022 .
[25] Stewart Shapiro,et al. Second-order languages and mathematical practice , 1985, Journal of Symbolic Logic.
[26] Gesammelte Abhandlungen , 1906, Nature.
[27] Solomon Feferman,et al. Reflecting on incompleteness , 1991, Journal of Symbolic Logic.
[28] W. Goldfarb,et al. Herbrand's Theorem and the Incompleteness of Arithmetic , 1990 .
[29] D. Hilbert. Die grundlagen der mathematik , 1928 .
[30] A. S. Yessenin-Volpin,et al. The Ultra-Intuitionistic Criticism and the Antitraditional Program for Foundations of Mathematics , 1970 .
[31] Michael Hallett. Cantorian set theory and limitation of size , 1984 .
[32] Christopher Hookway. Collected Papers on Mathematics, Logic and Philosophy , 1985 .
[33] J. Neumann. Eine Axiomatisierung der Mengenlehre. , 1925 .
[34] Mycielski. Finitistic real analysis , 1980 .
[35] Robert L. Vaught,et al. Axiomatizability by a schema , 1968, Journal of Symbolic Logic.
[36] R. Montague,et al. Set Theory and Higher-Order Logic , 1965 .
[37] P. Mancosu. The metaphysics of the calculus: A foundational debate in the Paris Academy of Sciences, 1700–1706 , 1989 .
[38] R. Dedekind. Stetigkeit und irrationale Zahlen , 2022 .
[39] Philip Kitcher,et al. The nature of mathematical knowledge , 1985 .
[40] David S. Johnson,et al. Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .
[41] Hilary Putnam,et al. Mathematics without Foundations , 1967 .
[42] Peter Aczel,et al. Non-well-founded sets , 1988, CSLI lecture notes series.
[43] Joseph W Dauben,et al. Abraham Robinson and nonstandard analysis: history, philosophy, and foundations of mathematics , 1988 .
[44] M. Dummett. Truth and other enigmas , 1978 .
[45] Roger North,et al. The Mathematical Career of Pierre de Fermat , 1974, The Mathematical Gazette.
[46] J. Dauben. The trigonometric background to Georg Cantor's theory of sets , 1971 .
[47] Stewart Shapiro. Second-order Logic, Foundations, and Rules , 1990 .
[48] Jan Mycielski. The meaning of pure mathematics , 1989, J. Philos. Log..
[49] Penelope Maddy,et al. Indispensability and Practice , 1992 .
[50] A. P. Youschkevitch. The concept of function up to the middle of the 19th century , 1976, Archive for History of Exact Sciences.
[51] D. Thompson,et al. A History of Greek Mathematics , 1922, Nature.
[52] Solomon Feferman,et al. Theories of Finite Type Related to Mathematical Practice , 1977 .
[53] M. Kline. Mathematical Thought from Ancient to Modern Times , 1972 .
[54] Heinz-Dieter Ebbinghaus. Axiomatizing set theory , 1976 .
[55] Jan Mycielski. Quantifier-free versions of first order logic and their psychological significance , 1992, J. Philos. Log..
[56] M. Beeson. Foundations of Constructive Mathematics , 1985 .
[57] E. Casari. Logic and the Foundations of Mathematics , 1981 .
[58] Barkley Rosser. Review: A. Malcev, Untersuchungen aus dem Gebiete der Mathematischen Logik , 1937 .
[59] Andrzej Zarach. Unions of Zf--Models Which are Themselves Zf--Models , 1982 .
[60] UNDERSTANDING ZERO AND INFINITY IN THE EARLY SCHOOL YEARS , 1983 .
[61] Jan Mycielski,et al. Analysis without actual infinity , 1981, Journal of Symbolic Logic.
[62] G. Landini. New Evidence concerning Russell's Substitutional Theory of Classes , 1989 .
[63] H. Edwards. Kronecker's place in history , 1988 .
[64] G. Boolos,et al. The Iterative Conception of Set , 1971 .
[65] D. Hilbert,et al. Geometry and the Imagination , 1953 .
[66] Abraham Adolf Fraenkel. Einleitung in die Mengenlehre , 1919 .
[67] C. Smorynski. The Incompleteness Theorems , 1977 .
[68] Bertrand Russell,et al. The Autobiography of Bertrand Russell , 1950 .
[69] B. Russell,et al. On Some Difficulties in the Theory of Transfinite Numbers and Order Types. , 1906 .
[70] Alonzo Church,et al. Introduction to Mathematical Logic , 1991 .
[71] E. Zermelo. Beweis, daß jede Menge wohlgeordnet werden kann , 1904 .
[72] Penelope Maddy. The Roots of Contemporary Platonism , 1989, J. Symb. Log..
[73] Alexander George. Skolem and the löwenheim-skolem theorem: a case study of the philosophical significance of mathematical results , 1985 .
[74] S. Shapiro. Foundations Without Foundationalism , 1991 .
[75] Stephen Cole Kleene,et al. The work of Kurt Gödel , 1976, Journal of Symbolic Logic.
[76] John von Neumann,et al. Über die Definition durch transfinite Induktion und verwandte Fragen der allgemeinen Mengenlehre , 1928 .
[77] K. Gödel. Consistency of the Continuum Hypothesis. (AM-3) , 1940 .
[78] A. Levy. The Definability of Cardinal Numbers , 1969 .
[79] Paul Bernays,et al. A System of Axiomatic Set Theory , 1976 .
[80] Geoffrey Hellman,et al. Mathematics without Numbers: Towards a Modal-Structural Interpretation , 1989 .
[81] L. Brouwer,et al. HISTORICAL BACKGROUND, PRINCIPLES AND METHODS OF INTUITIONISM , 1975 .
[82] Hao Wang,et al. From Mathematics to Philosophy. , 1975 .
[83] A. Levy. On Von Neumann's Axiom System for Set Theory , 1968 .
[84] Gregory H. Moore. The Roots of Russell's Paradox , 1988 .
[85] H. Stein,et al. Logos, logic, and logistiké: some philosophical remarks on nineteenth-century transformation of mathematics , 1988 .
[86] D. Rödding. Primitiv-Rekursive Funktionen Über Einem Bereich Endlicher Mengen , 1968 .
[87] Dmitri Mirimanoff,et al. Remarques sur la théorie des ensembles et les antinomies cantoriennes. II , 1920 .
[88] Robert L. Vaught. Set Theory: An Introduction , 1985 .
[89] Virginia Klenk. Intended models and the Löwenheim-Skolem theorem , 1976, J. Philos. Log..
[90] Charles Parsons,et al. Mathematics in Philosophy: Selected Essays , 1984 .
[91] M. Makkai. Admissible Sets and Infinitary Logic , 1977 .
[92] E. Zermelo. Grundlagen einer allgemeinen Theorie der mathematischen Satzsysteme , 1935 .
[93] Gottlob Frege,et al. Philosophical and mathematical correspondence , 1980 .
[94] N. Cocchiarella. Mathematical knowledge , 1978 .
[95] A. Urquhart. Russell’s zigzag path to the ramified theory of types , 1988 .
[96] B. Russell. Mathematical Logic as Based on the Theory of Types , 1908 .
[97] A. R.,et al. The Works of George Berkeley, Bishop of Cloyne , 1949, Nature.
[98] E. Zermelo. Untersuchungen über die Grundlagen der Mengenlehre. I , 1908 .
[99] F. A. Medvedev. Scenes from the History of Real Functions , 1991 .
[100] D. Knuth. Surreal numbers : how two ex-students turned on to pure mathematics and found total happiness : a mathematical novelette , 1974 .
[101] M. Detlefsen. Hilbert's program , 1986 .
[102] Mary Tiles,et al. Georg Cantor: His Mathematics and Philosophy of the Infinite. , 1982 .
[103] H. Weyl. Mathematics and Logic , 1946 .
[104] Gregory H. Moore,et al. Burali-Forti's paradox: A reappraisal of its origins , 1981 .
[105] Gregory H. Moore. The emergence of first-order logic , 1988 .
[106] Ivor Grattan-Guinness,et al. From the calculus to set theory, 1630-1910 : an introductory history , 1985 .
[107] Wilhelm Ackermann,et al. Die Widerspruchsfreiheit der allgemeinen Mengenlehre , 1937 .
[108] H. Putnam. What is mathematical truth , 1975 .
[109] G. Landini. Russell's substitutional theory of classes and relations , 1987 .
[110] Carl B. Boyer. The concepts of the calculus : a critical and historical discussion of the derivative and the integral , 1939 .
[111] Gregory H. Moore. The origins of Zermelo's axiomatization of set theory , 1978, J. Philos. Log..
[112] Crispin Wright,et al. Skolem and the Skeptic , 1985 .