Calculating the density and distribution function for the singly and doubly noncentral F

Simple, closed form saddlepoint approximations for the distribution and density of the singly and doubly noncentral F distributions are presented. Their overwhelming accuracy is demonstrated numerically using a variety of parameter values. The approximations are shown to be uniform in the right tail and the associated limitating relative error is derived. Difficulties associated with some algorithms used for “exact” computation of the singly noncentral F are noted.

[1]  H. Daniels Saddlepoint Approximations in Statistics , 1954 .

[2]  Lucy Joan Slater Confluent Hypergeometric Functions , 1960 .

[3]  Russell V. Lenth,et al.  Computing noncentral beta probabilities , 1987 .

[4]  S. Rice,et al.  Saddle point approximation for the distribution of the sum of independent random variables , 1980, Advances in Applied Probability.

[5]  J. Imhof Computing the distribution of quadratic forms in normal variables , 1961 .

[6]  William G. Bulgren,et al.  On Representations of the Doubly Non-Central F Distribution , 1971 .

[7]  A. W. Kemp,et al.  Kendall's Advanced Theory of Statistics. , 1994 .

[8]  D. Giles,et al.  Diagnostic Testing in Econometrics: Variable Addition, RESET, and Fourier Approximations * , 1998 .

[9]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[10]  R. C. Geary Extension of a Theorem by Harald Cramer on the Frequency Distribution of the Quotient of Two Variables , 1944 .

[11]  P. C. Tang,et al.  The power function of the analysis of variance tests, with tables and illustrations of their use. , 1938 .

[12]  James A. Ritcey,et al.  Evaluation of the Noncentral F-Distribution by Numerical Contour Integration , 1985 .

[13]  R. Price,et al.  Some non-central F-distributions expressed in closed form , 1964 .

[14]  S. Provost,et al.  The exact distribution of indefinite quadratic forms in noncentral normal vectors , 1996 .

[15]  R. Farebrother,et al.  THE DURBIN-WATSON TEST FOR SERIAL CORRELATION WHEN THERE IS NO INTERCEPT IN THE REGRESSION , 1980 .

[16]  Kazuhiro Ohtani,et al.  The exact distribution and density functions of a pre-test estimator of the error variance in a linear regression model with proxy variables , 1998 .

[17]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[18]  J. H. Randall Calculating central and non-central F probabilities , 1996 .

[19]  R. Berk,et al.  Continuous Univariate Distributions, Volume 2 , 1995 .

[20]  Martin Schader,et al.  Distribution function and percentage points for the central and noncentral F-distribution , 1986 .

[21]  N. L. Johnson,et al.  Noncentral and central chi-square, f and beta distribution functions as special cases of the distribution function of an indefinite quadratic form , 1993 .

[22]  H. E. Daniels,et al.  Tail Probability Approximations , 1987 .

[23]  Offer Lieberman,et al.  Saddlepoint Approximation for the Distribution of a Ratio of Quadratic Forms in Normal Variables , 1994 .

[24]  Carl W. Helstrom Calculating the Distribution of the Serial Correlation Estimator by Saddlepoint Integration , 1996 .

[25]  J. L. Jensen,et al.  Uniform saddlepoint approximations , 1988, Advances in Applied Probability.

[26]  S. Chow,et al.  On the Difference between the Classical and Inverse Methods of Calibration , 1990 .

[27]  Patrick Marsh,et al.  SADDLEPOINT APPROXIMATIONS FOR NONCENTRAL QUADRATIC FORMS , 1998, Econometric Theory.

[28]  Leo Knüsel On the accuracy of the statistical distributions in GAUSS , 1995 .

[29]  George Casella,et al.  Explaining the Saddlepoint Approximation , 1999 .

[30]  Leo Knüsel,et al.  Computation of the Noncentral Gamma Distribution , 1996, SIAM J. Sci. Comput..

[31]  D. Cox,et al.  Asymptotic techniques for use in statistics , 1989 .

[32]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[33]  M. L. Tiku,et al.  A NOTE ON THE DISTRIBUTION OF THE DOUBLY NON‐CENTRAL F DISTRIBUTION1 , 1972 .

[34]  R. W. Farebrother,et al.  The Distribution of a Quadratic Form in Normal Variables , 1990 .

[35]  Nancy Reid,et al.  Saddlepoint Methods and Statistical Inference , 1988 .

[36]  Danielle Morin-Wahhab,et al.  Moments of a ratio of two quadratic forms , 1985 .

[37]  M. L. Tiku,et al.  A FOUR‐MOMENT APPROXIMATION BASED ON THE F DISTRIBUTION , 1978 .

[38]  R. Davies The distribution of a linear combination of 2 random variables , 1980 .

[39]  J. Sargan,et al.  On the theory and application of the general linear model , 1970 .

[40]  H. Scheffé,et al.  The Analysis of Variance , 1960 .

[41]  Nancy Reid,et al.  Likelihood and higher‐order approximations to tail areas: A review and annotated bibliography , 1996 .

[42]  Patrick Marsh Saddlepoint approximations and non-central quadratic forms , 1995 .

[43]  M. Kendall,et al.  Kendall's advanced theory of statistics , 1995 .