Mathematical and Numerical Modeling of Flow and Transport 2012

1 Computational Transport Phenomena Laboratory (CTPL), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia 2 Mathematics Department, Faculty of Science, Aswan University, Aswan 81528, Egypt 3 Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4 4 Department of Mechanical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

[1]  Susumu Kawakami,et al.  Approaches to modeling coupled thermal, hydrological, and chemical processes in the drift scale heater test at Yucca Mountain , 2005 .

[2]  Bk Atkinson,et al.  A fracture mechanics study of subcritical tensile cracking of quartz in wet environments , 1979 .

[3]  Joshua Taron,et al.  Coupled mechanical and chemical processes in engineered geothermal reservoirs with dynamic permeability , 2010 .

[4]  J. Szklarski,et al.  Ekman-Hartmann layer in a magnetohydrodynamic Taylor-Couette flow. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  P. Prinos,et al.  Natural convection in an inclined enclosure , 1997 .

[6]  S. Koshizuka,et al.  Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid , 1996 .

[7]  Modeling of coupled tide–wave–surge process in the Yellow Sea , 2003 .

[8]  R. Donnelly,et al.  Experiments on the stability of hydromagnetic Couette flow , 1964, Journal of Fluid Mechanics.

[9]  Hitoshi Gotoh,et al.  SPH-LES Model for Numerical Investigation of Wave Interaction with Partially Immersed Breakwater , 2004 .

[10]  P. Robin Pressure solution at grain-to-grain contacts , 1978 .

[11]  Min-Cheol Ryu,et al.  Numerical simulation of impact loads using a particle method , 2010 .

[12]  Hitoshi Gotoh,et al.  Turbulence particle models for tracking free surfaces , 2005 .

[13]  S. Cummins,et al.  An SPH Projection Method , 1999 .

[14]  S. Shao,et al.  INCOMPRESSIBLE SPH METHOD FOR SIMULATING NEWTONIAN AND NON-NEWTONIAN FLOWS WITH A FREE SURFACE , 2003 .

[15]  R. Eriksson,et al.  A Mathematical Model to Study Liquid Inclusion Behavior at the Steel-Slag Interface , 2005 .

[16]  D. Elsworth,et al.  Evolution of permeability in a natural fracture: Significant role of pressure solution , 2004 .

[17]  Nawaf H. Saeid,et al.  Natural convection in a porous cavity with spatial sidewall temperature variation , 2005 .

[18]  A. Ladd,et al.  Lattice-Boltzmann Simulations of Particle-Fluid Suspensions , 2001 .

[19]  A. Baytaş Entropy generation for natural convection in an inclined porous cavity , 2000 .

[20]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[21]  Jonny Rutqvist,et al.  Analysis of Thermally Induced Changes in Fractured Rock Permeability during Eight Years of Heating and Cooling at the Yucca Mountain Drift Scale Test , 2008 .

[22]  P. T. Zubkov,et al.  NATURAL-CONVECTIVE HEAT TRANSFER IN A SQUARE CAVITY WITH TIME-VARYING SIDE-WALL TEMPERATURE , 2005 .

[23]  L. Natale,et al.  Hydraulic Design of Perforated Breakwaters , 1992 .

[24]  A. Revil Pervasive pressure‐solution transfer: A poro‐visco‐plastic model , 1999 .

[25]  Jan Erik H. Weber,et al.  THE BOUNDARY-LAYER REGIME FOR CONVECTION IN A VERTICAL POROUS LAYER , 1975 .

[26]  Harry L. Swinney,et al.  Flow regimes in a circular Couette system with independently rotating cylinders , 1986, Journal of Fluid Mechanics.

[27]  Q. Zou,et al.  On pressure and velocity boundary conditions for the lattice Boltzmann BGK model , 1995, comp-gas/9611001.

[28]  Martin Valdez,et al.  The Ability of Slags to Absorb Solid Oxide Inclusions , 2006 .

[29]  Rui Xu,et al.  Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach , 2009, J. Comput. Phys..

[30]  F. Chester,et al.  Mechanisms of compaction of quartz sand at diagenetic conditions , 2004 .

[31]  M. Perera,et al.  Shelter behind two-dimensional solid and porous fences , 1981 .

[32]  N. Jothi Shankar,et al.  Two- and three-dimensional oil spill model for coastal waters , 2001 .

[33]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[34]  Ali J. Chamkha,et al.  Double-diffusive natural convection in inclined porous cavities with various aspect ratios and temperature-dependent heat source or sink , 2008 .

[35]  S. N. Milford,et al.  Eulerian‐Lagrangian Solution of the Convection‐Dispersion Equation in Natural Coordinates , 1984 .

[36]  S. Shao,et al.  Corrected Incompressible SPH method for accurate water-surface tracking in breaking waves , 2008 .

[37]  M. Mehrvar,et al.  INCLUSION REMOVAL IN A TUNDISH BY GAS BUBBLING , 2004 .

[38]  H. Ji,et al.  Magnetorotational instability of dissipative Couette flow , 2001, Journal of Fluid Mechanics.

[39]  James C. Huang,et al.  A REVIEW OF THE STATE-OF-THE-ART OF OIL SPILL FATE/BEHAVIOR MODELS , 1983 .

[40]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[41]  H. Schulze,et al.  Hydrodynamics of Bubble-Mineral Particle Collisions , 1989 .

[42]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[43]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[44]  J. Larsen,et al.  Open boundaries in short wave simulations — A new approach , 1983 .

[45]  I. J. Schoenberg Contributions to the Problem of Approximation of Equidistant Data by Analytic Functions , 1988 .

[46]  Damien Violeau,et al.  Numerical modelling of complex turbulent free‐surface flows with the SPH method: an overview , 2007 .

[47]  I. Castro Wake characteristics of two-dimensional perforated plates normal to an air-stream , 1971, Journal of Fluid Mechanics.

[48]  Magnetorotational instability in a rotating liquid metal annulus , 2001, astro-ph/0103226.

[49]  Z. Li,et al.  Mathematical Model for Growth and Removal of Inclusion in a Multi-tuyere Ladle during Gas-stirring , 2005 .

[50]  Seiichi Koshizuka,et al.  Improvement of stability in moving particle semi‐implicit method , 2011 .

[51]  Ralph H. Cross,et al.  WAVE TRANSMISSION THROUGH PERMEABLE BREAKWATERS , 1972 .

[52]  Tawatchai Tingsanchali,et al.  A coupled numerical model for simulation of wave breaking and hydraulic performances of a composite seawall , 2006 .

[53]  J. Leong,et al.  Mixed convection from an open cavity in a horizontal channel , 2005 .

[54]  D. K. Davies,et al.  Stress-dependent permeability: Characterization and modeling , 2001 .

[55]  Yakun Guo,et al.  Three-dimensional numerical simulation for transport of oil spills in seas , 2008 .

[56]  Pep Español,et al.  Incompressible smoothed particle hydrodynamics , 2007, J. Comput. Phys..

[57]  Il Won Seo,et al.  Evaluation of Dispersion Coefficients in Meandering Channels from Transient Tracer Tests , 2006 .

[58]  Nikolaus A. Adams,et al.  A constant-density approach for incompressible multi-phase SPH , 2009, J. Comput. Phys..

[59]  Mark Reed,et al.  A coastal zone oil spill model: Development and sensitivity studies , 1989 .

[60]  Stéphane Ploix,et al.  Application of weakly compressible and truly incompressible SPH to 3-D water collapse in waterworks , 2010 .

[61]  Rui Xu,et al.  Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method , 2008, J. Comput. Phys..

[62]  Katsuhiko Kaneko,et al.  Study of subcritical crack growth in andesite using the Double Torsion test , 2005 .

[63]  Arthur Veldman,et al.  A Volume-of-Fluid based simulation method for wave impact problems , 2005 .

[64]  3D thermo-hydro-mechanical-migratory coupling model and FEM analyses for dual-porosity medium , 2010 .

[65]  N. H. Saeid,et al.  Natural Convection in a Square Cavity with Spatial Side-Wall Temperature Variation , 2006 .

[66]  Patricia M. Dove,et al.  Geochemical controls on the kinetics of quartz fracture at subcritical tensile stresses , 1995 .

[67]  B. Gardiner,et al.  WINDBREAKS AND SHELTERBELTS , 2004 .

[68]  Salem Alhajraf,et al.  Computational fluid dynamic modeling of drifting particles at porous fences , 2004, Environ. Model. Softw..

[69]  H. Yamaguchi,et al.  Characteristics of thermo-magnetic driven motor using magnetic fluid , 2004 .

[70]  Poojitha D. Yapa,et al.  Modeling oil spills in a river—lake system , 1994 .

[71]  Zanetti,et al.  Use of the Boltzmann equation to simulate lattice gas automata. , 1988, Physical review letters.

[72]  S. Miyama,et al.  Numerical Simulation of Viscous Flow by Smoothed Particle Hydrodynamics , 1994 .

[73]  Min Zeng,et al.  Numerical Study of Natural Convection Heat Transfer in an Inclined Porous Cavity with Time-Periodic Boundary Conditions , 2008 .

[74]  Xiaolin Wang,et al.  Solving the depth-integrated solute transport equation with a TVD-MacCormack scheme , 2010, Environ. Model. Softw..

[75]  D. Martínez,et al.  On boundary conditions in lattice Boltzmann methods , 1996 .

[76]  Poojitha D. Yapa,et al.  OIL SLICK TRANSPORT IN RIVERS , 1988 .

[77]  Carlo F. Barenghi,et al.  Hydromagnetic Taylor–Couette flow: numerical formulation and comparison with experiment , 2002, Journal of Fluid Mechanics.

[78]  Thomas A. Dewers,et al.  Rate laws for water‐assisted compaction and stress‐induced water‐rock interaction in sandstones , 1995 .

[79]  C. W. Atta Exploratory measurements in spiral turbulence. , 1966 .

[80]  Behzad Ataie-Ashtiani,et al.  Numerical simulation of landslide impulsive waves by incompressible smoothed particle hydrodynamics , 2008 .

[81]  Philippe Ackerer,et al.  Solving the advection-diffusion equation with the Eulerian-Lagrangian localized adjoint method on unstructured meshes and non uniform time stepping , 2005 .

[82]  Qiao Ying Zhang,et al.  Mathematical Model for Removal of Inclusion in Molten Steel by Injecting Gas at Ladle Shroud , 2005 .

[83]  Ronald Fedkiw,et al.  Two-Way Coupled SPH and Particle Level Set Fluid Simulation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[84]  D. Elsworth,et al.  Compaction of a Rock Fracture Moderated by Competing Roles of Stress Corrosion and Pressure Solution , 2008 .

[85]  H. J. De Vriend,et al.  Flow measurements in a curved rectangular channel , 1979 .

[86]  Shuangqiang Wang,et al.  Two-dimensional numerical simulation for transport and fate of oil spills in seas , 2005 .

[87]  Masayuki Tanaka,et al.  Stabilization and smoothing of pressure in MPS method by Quasi-Compressibility , 2010, J. Comput. Phys..

[88]  J. Meijerink,et al.  An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .

[89]  Nikolaus A. Adams,et al.  An incompressible multi-phase SPH method , 2007, J. Comput. Phys..

[90]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[91]  A. R Packwood,et al.  Flow through porous fences in thick boundary layers: comparisons between laboratory and numerical experiments , 2000 .

[92]  Joshua Taron,et al.  Thermal–hydrologic–mechanical–chemical processes in the evolution of engineered geothermal reservoirs , 2009 .

[93]  Nick Barton,et al.  An improved model for hydromechanical coupling during shearing of rock joints , 2001 .

[94]  G. Taylor Stability of a Viscous Liquid Contained between Two Rotating Cylinders , 1923 .

[95]  C. Shu,et al.  A thermal lattice Boltzmann model with diffuse scattering boundary condition for micro thermal flows , 2007 .

[96]  R. E. Rosensweig,et al.  AN INTRODUCTION TO FERROHYDRODYNAMICS , 1988 .

[97]  Y. L. Lau,et al.  TRANSVERSE MIXING IN MEANDERING CHANNELS WITH VARYING BOTTOM TOPOGRAPHY , 1977 .

[98]  D. C. Stevenson,et al.  Wind protection by model fences in a simulated atmospheric boundary layer , 1977 .

[99]  G. Taylor Dispersion of soluble matter in solvent flowing slowly through a tube , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[100]  C. K. Thornhill,et al.  Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane , 1952, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[101]  Hitoshi Gotoh,et al.  Enhancement of stability and accuracy of the moving particle semi-implicit method , 2011, J. Comput. Phys..

[102]  D. Elsworth,et al.  Constraints on compaction rate and equilibrium in the pressure solution creep of quartz aggregates and fractures: Controls of aqueous concentration , 2010 .

[103]  J. A. Galt,et al.  Trajectory Analysis for the Exxon Valdez: Hindcast Study , 1991 .

[104]  Hitoshi Gotoh,et al.  ENHANCED PREDICTIONS OF WAVE IMPACT PRESSURE BY IMPROVED INCOMPRESSIBLE SPH METHODS , 2009 .