UAV-mounted hyperspectral mapping of intertidal macroalgae

[1]  O. Tully,et al.  The ichthyoneuston of Galway Bay (Ireland) , 1989 .

[2]  P. Åberg A Demographic Study of Two Populations of the Seaweed Ascophyllum Nodosum , 1992 .

[3]  N. Campbell,et al.  Derivation and applications of probabilistic measures of class membership from the maximum-likelihood classification , 1992 .

[4]  Fred A. Kruse,et al.  The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data , 1993 .

[5]  P. Harrison,et al.  Seaweed Ecology and Physiology. , 1995 .

[6]  John A. Richards,et al.  Efficient maximum likelihood classification for imaging spectrometer data sets , 1994, IEEE Trans. Geosci. Remote. Sens..

[7]  Robert A. Schowengerdt,et al.  A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification , 1995, IEEE Trans. Geosci. Remote. Sens..

[8]  D. Stengel,et al.  Morphology and in situ growth rates of plants of Ascophyllum nodosum (Phaeophyta) from different shore levels and responses of plants to vertical transplantation , 1997 .

[9]  E. Milton,et al.  The use of the empirical line method to calibrate remotely sensed data to reflectance , 1999 .

[10]  P. Mumby,et al.  The cost-effectiveness of remote sensing for tropical coastal resources assessment and management , 1999 .

[11]  M. Guiry,et al.  Seasonal growth and recruitment of Himanthalia elongata (Fucales, Phaeophycota) in different habitats on the Irish west coast , 1999 .

[12]  M. Hensey,et al.  An Assessment of Water Quality Data from Kilkieran Bay, Co. Galway , 2000 .

[13]  Giles M. Foody,et al.  Status of land cover classification accuracy assessment , 2002 .

[14]  P. Treitz,et al.  Image classification of a northern peatland complex using spectral and plant community data , 2003 .

[15]  S. Fyfe,et al.  Spatial and temporal variation in spectral reflectance: Are seagrass species spectrally distinct? , 2003 .

[16]  J. Kerr,et al.  From space to species: ecological applications for remote sensing , 2003 .

[17]  Robert L. Vadas, Sr.,et al.  Biomass and Productivity of Intertidal Rockweeds (Ascophyllum nodosum LeJolis) in Cobscook Bay , 2004 .

[18]  S. Franklin,et al.  Remote sensing for large-area habitat mapping , 2005 .

[19]  Kidiyo Kpalma,et al.  An automatic image registration for applications in remote sensing , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[20]  A. Belward,et al.  GLC2000: a new approach to global land cover mapping from Earth observation data , 2005 .

[21]  J. A. Gomes,et al.  Land cover update by supervised classification of segmented ASTER images , 2005 .

[22]  D. Roberts,et al.  Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales , 2005 .

[23]  D. Jupp,et al.  Mapping coral reef benthic substrates using hyperspectral space-borne images and spectral libraries , 2006 .

[24]  T. Kutser,et al.  Spectral library of macroalgae and benthic substrates in Estonian coastal waters , 2006, Proceedings of the Estonian Academy of Sciences. Biology. Ecology.

[25]  Mark P. Johnson,et al.  Limpet grazing and loss of Ascophyllum nodosum canopies on decadal time scales , 2007 .

[26]  A. Shaw,et al.  Hyperspectral imagery for mapping intertidal vegetation at Roberts Bank tidal flats, British Columbia, Canada , 2007 .

[27]  Helmi Zulhaidi Mohd Shafri,et al.  The Performance of Maximum Likelihood, Spectral Angle Mapper, Neural Network and Decision Tree Classifiers in Hyperspectral Image Analysis , 2007 .

[28]  Benjamin D. Hennig,et al.  Hyperspectral remote sensing and analysis of intertidal zones: A contribution to monitor coastal biodiversity , 2007 .

[29]  L. Airoldi,et al.  Recovering a lost baseline: missing kelp forests from a metropolitan coast , 2008 .

[30]  Chenghai Yang,et al.  Yield Estimation from Hyperspectral Imagery Using Spectral Angle Mapper (SAM) , 2008 .

[31]  Carrie V. Kappel,et al.  Understanding and Managing Human Threats to the Coastal Marine Environment , 2009, Annals of the New York Academy of Sciences.

[32]  Alexander F. H. Goetz,et al.  Three decades of hyperspectral remote sensing of the Earth: a personal view. , 2009 .

[33]  J. R. Morrison,et al.  Macroalgae and Eelgrass Mapping in Great Bay Estuary Using AISA Hyperspectral Imagery. , 2009 .

[34]  Jörgen Ahlberg,et al.  Co-aligning aerial hyperspectral push-broom strips for change detection , 2010, Security + Defence.

[35]  D. Siegel,et al.  Scaling giant kelp field measurements to regional scales using satellite observations , 2010 .

[36]  M. Robin,et al.  Increase in seagrass distribution at Bourgneuf Bay (France) detected by spatial remote sensing , 2010 .

[37]  Á. Borja,et al.  Capabilities of the bathymetric Hawk Eye LiDAR for coastal habitat mapping: A case study within a Basque estuary , 2010 .

[38]  A. Rango,et al.  Image Processing and Classification Procedures for Analysis of Sub-decimeter Imagery Acquired with an Unmanned Aircraft over Arid Rangelands , 2011 .

[39]  R. Pontius,et al.  Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment , 2011 .

[40]  Juan Freire,et al.  Remote sensing with SPOT-4 for mapping kelp forests in turbid waters on the south European Atlantic shelf , 2011 .

[41]  Heikki Saari,et al.  Unmanned Aerial Vehicle (UAV) operated spectral camera system for forest and agriculture applications , 2011, Remote Sensing.

[42]  Matthew O. Anderson,et al.  Radiometric and Geometric Analysis of Hyperspectral Imagery Acquired from an Unmanned Aerial Vehicle , 2012, Remote. Sens..

[43]  A. Lechner,et al.  CHARACTERISING UPLAND SWAMPS USING OBJECT-BASED CLASSIFICATION METHODS AND HYPER-SPATIAL RESOLUTION IMAGERY DERIVED FROM AN UNMANNED AERIAL VEHICLE , 2012 .

[44]  T. Kutser,et al.  Assessment of AHS (Airborne Hyperspectral Scanner) sensor to map macroalgal communities on the Ría de vigo and Ría de Aldán coast (NW Spain) , 2012 .

[45]  Natascha Oppelt,et al.  Hyperspectral classification approaches for intertidal macroalgae habitat mapping: a case study in Heligoland , 2012 .

[46]  R. Kordas,et al.  EFFECTS OF CLIMATE CHANGE ON GLOBAL SEAWEED COMMUNITIES , 2012, Journal of phycology.

[47]  Karen Anderson,et al.  Lightweight unmanned aerial vehicles will revolutionize spatial ecology , 2013 .

[48]  Tiit Kutser,et al.  Classifying the Baltic Sea Shallow Water Habitats Using Image-Based and Spectral Library Methods , 2013, Remote. Sens..

[49]  T. Kutser,et al.  Assessment of the hyperspectral sensor CASI-2 for macroalgal discrimination on the Ría de Vigo coast (NW Spain) using field spectroscopy and modelled spectral libraries , 2013 .

[50]  Michael W. Kudenov,et al.  Review of snapshot spectral imaging technologies , 2013, Optics and Precision Engineering.

[51]  N. Oppelt,et al.  Spectral mixture of intertidal marine macroalgae around the island of Helgoland (Germany, North Sea) , 2013 .

[52]  S. Phinn,et al.  Filling the ‘white ribbon’ – a multisource seamless digital elevation model for Lizard Island, northern Great Barrier Reef , 2013 .

[53]  Giles M. Foody,et al.  Good practices for estimating area and assessing accuracy of land change , 2014 .

[54]  Jonne Kotta,et al.  In-air spectral signatures of the Baltic Sea macrophytes and their statistical separability , 2014 .

[55]  Arko Lucieer,et al.  HyperUAS—Imaging Spectroscopy from a Multirotor Unmanned Aircraft System , 2014, J. Field Robotics.

[56]  Robert Frouin,et al.  Water Column Correction for Coral Reef Studies by Remote Sensing , 2014, Sensors.

[57]  Juliane Bendig,et al.  Low-weight and UAV-based Hyperspectral Full-frame Cameras for Monitoring Crops: Spectral Comparison with Portable Spectroradiometer Measurements , 2015 .

[58]  Carlos Henrique Grohmann,et al.  Effects of spatial resolution on slope and aspect derivation for regional-scale analysis , 2015, Comput. Geosci..

[59]  P. Thenkabail Remotely Sensed Data Characterization, Classification, and Accuracies , 2015 .

[60]  E. Malta,et al.  European seaweeds under pressure: Consequences for communities and ecosystem functioning , 2015 .

[61]  Brandon J. Russell,et al.  Hyperspectral discrimination of floating mats of seagrass wrack and the macroalgae Sargassum in coastal waters of Greater Florida Bay using airborne remote sensing , 2015 .

[62]  Rolando Herrero,et al.  Preprocessing and compression of Hyperspectral images captured onboard UAVs , 2015, SPIE Security + Defence.

[63]  Á. Borja,et al.  Mapping estuarine habitats using airborne hyperspectral imagery, with special focus on seagrass meadows , 2015 .

[64]  Heikki Saari,et al.  Remote Sensing of 3-D Geometry and Surface Moisture of a Peat Production Area Using Hyperspectral Frame Cameras in Visible to Short-Wave Infrared Spectral Ranges Onboard a Small Unmanned Airborne Vehicle (UAV) , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[65]  Richard Gloaguen,et al.  Processing of drone-borne hyperspectral data for geological applications , 2016, 2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS).

[66]  Julien Radoux,et al.  Good Practices for Object-Based Accuracy Assessment , 2017, Remote. Sens..

[67]  S. Hamylton Spatial Analysis of Coastal Environments , 2017 .

[68]  Blake M. Allan,et al.  Applications of unmanned aerial vehicles in intertidal reef monitoring , 2017, Scientific Reports.

[69]  Raul Morais,et al.  Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry , 2017, Remote. Sens..

[70]  N. Sánchez-Carnero,et al.  A comparison of spectral macroalgae taxa separability methods using an extensive spectral library , 2017 .

[71]  J. Shutler,et al.  Spatial assessment of intertidal seagrass meadows using optical imaging systems and a lightweight drone , 2018 .

[72]  Doreen S. Boyd,et al.  UAVs in pursuit of plant conservation - Real world experiences , 2017, Ecol. Informatics.

[73]  Jennifer J. Swenson,et al.  Integrating Drone Imagery into High Resolution Satellite Remote Sensing Assessments of Estuarine Environments , 2018, Remote. Sens..

[74]  Daniele Ventura,et al.  Mapping and Classification of Ecologically Sensitive Marine Habitats Using Unmanned Aerial Vehicle (UAV) Imagery and Object-Based Image Analysis (OBIA) , 2018, Remote. Sens..

[75]  Elisabeth A. Addink,et al.  Multitemporal Classification of River Floodplain Vegetation Using Time Series of UAV Images , 2018, Remote. Sens..

[76]  Christophe Delacourt,et al.  Direct Georeferencing of a Pushbroom, Lightweight Hyperspectral System for Mini-UAV Applications , 2018, Remote. Sens..

[77]  Christophe Sannier,et al.  The effects of imperfect reference data on remote sensing-assisted estimators of land cover class proportions , 2018, ISPRS Journal of Photogrammetry and Remote Sensing.

[78]  Richard Gloaguen,et al.  Drone-Borne Hyperspectral Monitoring of Acid Mine Drainage: An Example from the Sokolov Lignite District , 2018, Remote. Sens..

[79]  Jocelyn Chanussot,et al.  Noise Reduction in Hyperspectral Imagery: Overview and Application , 2018, Remote. Sens..

[80]  Eija Honkavaara,et al.  Quantitative Remote Sensing at Ultra-High Resolution with UAV Spectroscopy: A Review of Sensor Technology, Measurement Procedures, and Data Correction Workflows , 2018, Remote. Sens..

[81]  I. Tittley,et al.  A comparison of multispectral aerial and satellite imagery for mapping intertidal seaweed communities , 2018 .

[82]  Junichi Kurihara,et al.  A novel approach for vegetation classification using UAV-based hyperspectral imaging , 2018, Comput. Electron. Agric..

[83]  B. Kelaher,et al.  The potential for unmanned aerial vehicles (UAVs) to conduct marine fauna surveys in place of manned aircraft , 2018 .

[84]  Kasper Johansen,et al.  Radiometric Assessment of a UAV-Based Push-Broom Hyperspectral Camera , 2019, Sensors.

[85]  J. Conn,et al.  High-accuracy detection of malaria vector larval habitats using drone-based multispectral imagery , 2019, PLoS neglected tropical diseases.

[86]  George Leblanc,et al.  Implementation of a UAV–Hyperspectral Pushbroom Imager for Ecological Monitoring , 2019, Drones.

[87]  David W Johnston,et al.  Unoccupied Aircraft Systems in Marine Science and Conservation. , 2019, Annual review of marine science.