Coverage probability of bootstrap confidence intervals in heavy-tailed frequency models, with application to precipitation data

Bootstrap, a technique for determining the accuracy of statistics, is a tool widely used in climatological and hydrological applications. The paper compares coverage probabilities of confidence intervals of high quantiles (5- to 200-year return values) constructed by the nonparametric and parametric bootstrap in frequency analysis of heavy-tailed data, typical for maxima of precipitation amounts. The simulation experiments are based on a wide range of models used for precipitation extremes (generalized extreme value, generalized Pareto, generalized logistic, and mixed distributions). The coverage probability of the confidence intervals is quantified for several sample sizes (n = 20, 40, 60, and 100) and tail behaviors. We show that both bootstrap methods underestimate the width of the confidence intervals but that the parametric bootstrap is clearly superior to the nonparametric one. Even a misspecification of the parametric model—often unavoidable in practice—does not prevent the parametric bootstrap from performing better in most cases. A tendency to narrower confidence intervals from the nonparametric than parametric bootstrap is demonstrated in the application to high quantiles of distributions of observed maxima of 1- and 5-day precipitation amounts; the differences increase with the return level. The results show that estimation of uncertainty based on nonparametric bootstrap is highly unreliable, especially for small and moderate sample sizes and for very heavy-tailed data.

[1]  GEV-PWM Model for Distribution of Minimum Flows , 1999 .

[2]  W. Asquith Depth-duration frequency of precipitation for Texas , 1998 .

[3]  T. A. Buishand,et al.  Extreme rainfall estimation by combining data from several sites , 1991 .

[4]  J. Hosking L‐Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics , 1990 .

[5]  W. May,et al.  Enhanced resolution modelling study on anthropogenic climate change: changes in extremes of the hydrological cycle , 2002 .

[6]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[7]  Arthur Mynett,et al.  The construction of confidence intervals for frequency analysis using resampling techniques , 2004 .

[8]  Mark M. Meerschaert,et al.  Modeling river flows with heavy tails , 1998 .

[9]  P. Štěpánek,et al.  Simulation of summer temperature extremes over the Czech Republic in regional climate models , 2008 .

[10]  J. Kyselý,et al.  Regional growth curves and improved design value estimates of extreme precipitation events in the Czech Republic , 2007 .

[11]  C. Chatterjee,et al.  Regional Flood Frequency Analysis Using L-Moments for North Brahmaputra Region of India , 2005 .

[12]  H. Fowler,et al.  Multi‐model ensemble estimates of climate change impacts on UK seasonal precipitation extremes , 2009 .

[13]  J. Stedinger,et al.  Generalized maximum‐likelihood generalized extreme‐value quantile estimators for hydrologic data , 2000 .

[14]  J. Palutikof,et al.  The evolution of extreme temperatures in the Central England temperature record , 2002 .

[15]  T. Ouarda,et al.  Regional flood-duration frequency modeling in the changing environment , 2006 .

[16]  J. V. Sutcliffe,et al.  Regional flood frequency analysis in arid and semi-arid areas , 1992 .

[17]  K. Ibrahim,et al.  The best fitting distribution of annual maximum rainfall in Peninsular Malaysia based on methods of L-moment and LQ-moment , 2009 .

[18]  Christel Prudhomme,et al.  Uncertainty and climate change impact on the flood regime of small UK catchments , 2003 .

[19]  B. Gnedenko Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .

[20]  G. P. Können,et al.  Statistics of Extreme Synoptic-Scale Wind Speeds in Ensemble Simulations of Current and Future Climate , 2004 .

[21]  J. R. Wallis,et al.  Regional frequency analysis , 1997 .

[22]  M. I. Ahmad,et al.  Log-logistic flood frequency analysis , 1988 .

[23]  J. Kysel,et al.  Comparison of extremes in GCM-simulated, downscaled and observed central-European temperature series , 2002 .

[24]  Jan Kyselý,et al.  A Cautionary Note on the Use of Nonparametric Bootstrap for Estimating Uncertainties in Extreme-Value Models , 2008 .

[25]  J. J. Egozcue,et al.  Bayesian hazard analysis of heavy precipitation in eastern Spain , 2001 .

[26]  Jan Kyselý,et al.  Climate-change effects on extreme precipitation in central Europe: uncertainties of scenarios based on regional climate models , 2009 .

[27]  Regional analysis of annual maximum and partial duration flood data by nonparametric and L-moment methods , 2000 .

[28]  Debbie J. Dupuis,et al.  A Comparison of confidence intervals for generalized extreme-value distributions , 1998 .

[29]  P. Northrop,et al.  Floods: some probabilistic and statistical approaches , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[30]  Sergio M. Vicente-Serrano,et al.  Mapping the hazard of extreme rainfall by peaks-over-threshold extreme value analysis and spatial regression techniques , 2006 .

[31]  M. Parlange,et al.  Statistics of extremes in hydrology , 2002 .

[32]  Debbie J. Dupuis,et al.  Large wind speeds: Modeling and outlier detection , 2004 .

[33]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[34]  Soon-Hyuk Lee,et al.  Frequency analysis of extreme rainfall using L‐moment , 2003 .

[35]  Ján Szolgay,et al.  Region-of-influence approach to a frequency analysis of heavy precipitation in Slovakia , 2007 .

[36]  C. Serra,et al.  Statistical distributions and sampling strategies for the analysis of extreme dry spells in Catalonia (NE Spain) , 2006 .

[37]  Nader Tajvidi,et al.  Confidence Intervals and Accuracy Estimation for Heavy-Tailed Generalized Pareto Distributions , 2003 .

[38]  D. Jacob,et al.  Modeling extreme precipitation events—a climate change simulation for Europe , 2004 .

[39]  R. Vogel,et al.  Probability Distribution of Low Streamflow Series in the United States , 2002 .

[40]  Mahesh D. Pandey,et al.  A comparison of methods of extreme wind speed estimation , 2005 .

[41]  D. L. Fitzgerald Analysis of extreme rainfall using the log logistic distribution , 2005 .

[42]  Incertitude d'estimation des pluies extrêmes du pourtour méditerranéen: illustration par les données de Marseille , 2006 .

[43]  Daniel P. Ames,et al.  Estimating 7Q10 Confidence Limits from Data: A Bootstrap Approach , 2006 .

[44]  Jery R. Stedinger,et al.  Sampling variance of normalized GEV/PWM quantile estimators and a regional homogeneity test , 1992 .

[45]  J. R. Wallis,et al.  Regional Frequency Analysis: An Approach Based on L-Moments , 1997 .

[46]  Aart Overeem,et al.  Rainfall depth-duration-frequency curves and their uncertainties , 2008 .

[47]  J Carpenter,et al.  Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians. , 2000, Statistics in medicine.

[48]  S. Coles,et al.  An Introduction to Statistical Modeling of Extreme Values , 2001 .

[49]  F. Zwiers,et al.  Changes in the Extremes in an Ensemble of Transient Climate Simulations with a Coupled Atmosphere–Ocean GCM , 2000 .

[50]  J. Kyselý Trends in heavy precipitation in the Czech Republic over 1961–2005 , 2009 .

[51]  N. Hatzianastassiou,et al.  Analysis of hot spell characteristics in the Greek region , 2005 .

[52]  Peter K. Dunn,et al.  Bootstrap confidence intervals for predicted rainfall quantiles , 2001 .

[53]  R. Twardosz Probabilistic model of maximum precipitation depths for Kraków (southern Poland, 1886-2002) , 2009 .

[54]  T. Ouarda,et al.  Frequency analysis and temporal pattern of occurrences of southern Quebec heatwaves , 2005 .

[55]  Scott F. Lamoureux,et al.  Five centuries of interannual sediment yield and rainfall‐induced erosion in the Canadian High Arctic recorded in lacustrine varves , 2000 .

[56]  Francis W. Zwiers,et al.  Estimating Extremes in Transient Climate Change Simulations , 2005 .

[57]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[58]  Mohamed Shoukri,et al.  Sampling properties of estimators of the log‐logistic distribution with application to Canadian precipitation data , 1988 .

[59]  J. Vrijling,et al.  Dutch case studies of the estimation of extreme quantiles and associated uncertainty by bootstrap simulations , 2004 .

[60]  Murray C. Peel,et al.  Generalized extreme value distribution fitted by LH moments for low‐flow frequency analysis , 2007 .

[61]  David A. Jones,et al.  Sampling variance of flood quantiles from the generalised logistic distribution estimated using the method of L-moments , 2004 .