Vibrational feedback control: Zeros placement capabilities

It is shown that in addition to closed-loop pole placement, vibrational feedback controllers lead, in the sense specified below, to a possibility of open-loop zeros assignability. On this basis, the superior performance characteristics of continuous-time periodic controllers, discovered in [3]-[6], are explained.

[1]  E. Davison,et al.  On the stabilization of decentralized control systems , 1973 .

[2]  Semyon Meerkov,et al.  Principle of vibrational control: Theory and applications , 1979, 1979 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[3]  B. O. Anderson,et al.  Time-varying feedback laws for decentralized control , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[4]  A. Tannenbaum Feedback stabilization of linear dynamical plants with uncertainty in the gain factor , 1980 .

[5]  Shih-Ho Wang,et al.  Stabilization of decentralized control systems via time-varying controllers , 1982 .

[6]  J. Tylee,et al.  Scalar sinusoidal feedback laws in decentralized control , 1982, 1982 21st IEEE Conference on Decision and Control.

[7]  H. Seraji On fixed modes in decentralized control systems , 1982 .

[8]  Semyon M. Meerkov,et al.  Stability of fast periodic systems , 1985 .

[9]  K. Poolla,et al.  Robust control of linear time-invariant plants using periodic compensation , 1985 .

[10]  T. Runolfsson,et al.  Vibrational-Feedback Control Of Decentralized Systems: A Design Algorithm , 1985 .

[11]  Louise Trave,et al.  An application of vibrational control to cancel unstable decentralized fixed modes , 1985 .

[12]  S. Wang,et al.  A characterization of decentralized fixed modes in terms of transmission zeros , 1985, IEEE Transactions on Automatic Control.

[13]  E. Davison,et al.  Sampling and Decentralized Fixed Modes , 1985, 1985 American Control Conference.

[14]  P. Khargonekar,et al.  Non-Euclidian metrics and the robust stabilization of systems with parameter uncertainty , 1985 .

[15]  Semyon M. Meerkov,et al.  Vibrational control of nonlinear systems: Vibrational stabilizability , 1986 .

[16]  Semyon M. Meerkov,et al.  Vibrational control of nonlinear systems: Vibrational controllability and transient behavior , 1986 .