High-Speed Finite Control Set Model Predictive Control for Power Electronics

Common approaches for direct model predictive control (MPC) for current reference tracking in power electronics suffer from the high computational complexity encountered when solving integer optimal control problems over long prediction horizons. We propose an efficient alternative method based on approximate dynamic programming, greatly reducing the computational burden and enabling sampling times below <inline-formula><tex-math notation="LaTeX"> $25\;\mu \text{s}$</tex-math></inline-formula>. Our approach is based on the offline estimation of an infinite horizon value function, which is then utilized as the tail cost of an MPC problem. This allows us to reduce the controller horizon to a very small number of stages, while simultaneously improving the overall controller performance. Our proposed algorithm was implemented on a small size FPGA and validated on a variable-speed drive system with a three-level voltage-source converter. Time measurements showed that our algorithm requires only <inline-formula> <tex-math notation="LaTeX">$5.76\;\mu \text{s}$</tex-math></inline-formula> for horizon <inline-formula> <tex-math notation="LaTeX">$N=1$</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">$17.27\;\mu \text{s}$</tex-math></inline-formula> for <inline-formula><tex-math notation="LaTeX">$N=2$</tex-math></inline-formula> , in both cases outperforming state-of-the-art approaches with much longer horizons in terms of currents distortion and switching frequency. To the authors’ knowledge, this is the first time direct MPC for current control has been implemented on an FPGA solving the integer optimization problem in real time and achieving comparable performance to formulations with long prediction horizons.

[1]  Edith Clarke,et al.  Determination of Instantaneous Currents and Voltages by Means of Alpha, Beta, and Zero Components , 1951, Transactions of the American Institute of Electrical Engineers.

[2]  R. E. Kalman,et al.  When Is a Linear Control System Optimal , 1964 .

[3]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[4]  Joachim Holtz,et al.  Fast current trajectory tracking control based on synchronous optimal pulsewidth modulation , 1994, Proceedings of 1994 IEEE Industry Applications Society Annual Meeting.

[5]  Joachim Holtz,et al.  The representation of AC machine dynamics by complex signal flow graphs , 1995, IEEE Trans. Ind. Electron..

[6]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[7]  Scott D. Sudhoff,et al.  Analysis of Electric Machinery and Drive Systems , 1995 .

[8]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[9]  Jay H. Lee,et al.  Model predictive control: past, present and future , 1999 .

[10]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[11]  Benjamin Van Roy,et al.  The Linear Programming Approach to Approximate Dynamic Programming , 2003, Oper. Res..

[12]  G. Goodwin,et al.  Finite constraint set receding horizon quadratic control , 2004 .

[13]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[14]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[15]  Babak Hassibi,et al.  On the sphere-decoding algorithm I. Expected complexity , 2005, IEEE Transactions on Signal Processing.

[16]  Tobias Geyer,et al.  Low complexity model predictive control in power electronics and power systems , 2005 .

[17]  Dimitris Bertsimas,et al.  Optimization over integers , 2005 .

[18]  Joachim Holtz,et al.  Synchronous optimal pulsewidth modulation and stator flux trajectory control for medium voltage drives , 2005 .

[19]  T. Hughes,et al.  Signals and systems , 2006, Genome Biology.

[20]  Ralph Kennel,et al.  Predictive control in power electronics and drives , 2008, 2008 IEEE International Symposium on Industrial Electronics.

[21]  Manfred Morari,et al.  Model Predictive Direct Torque Control—Part I: Concept, Algorithm, and Analysis , 2009, IEEE Transactions on Industrial Electronics.

[22]  Ralph Kennel,et al.  Model predictive control -- a simple and powerful method to control power converters , 2009, 2009 IEEE 6th International Power Electronics and Motion Control Conference.

[23]  Ilya V. Kolmanovsky,et al.  An integrated perturbation analysis and Sequential Quadratic Programming approach for Model Predictive Control , 2009, Autom..

[24]  Manfred Morari,et al.  Model Predictive Direct Torque Control—Part II: Implementation and Experimental Evaluation , 2009, IEEE Transactions on Industrial Electronics.

[25]  G. Papafotiou,et al.  Model predictive pulse pattern control , 2011, 2011 IEEE Energy Conversion Congress and Exposition.

[26]  Jing Sun,et al.  Model Predictive Control for a Full Bridge DC/DC Converter , 2012, IEEE Transactions on Control Systems Technology.

[27]  W. Marsden I and J , 2012 .

[28]  Patricio Cortes Estay,et al.  Predictive control of power converters and electrical drives , 2012 .

[29]  Tobias Geyer,et al.  Model Predictive Pulse Pattern Control for the Five-Level Active Neutral-Point-Clamped Inverter , 2013 .

[30]  T. Geyer,et al.  Reformulation of the long-horizon direct model predictive control problem to reduce the computational effort , 2014, 2014 IEEE Energy Conversion Congress and Exposition (ECCE).

[31]  Anton van den Hengel,et al.  Semidefinite Programming , 2014, Computer Vision, A Reference Guide.

[32]  Manfred Morari,et al.  Embedded Online Optimization for Model Predictive Control at Megahertz Rates , 2013, IEEE Transactions on Automatic Control.

[33]  Tobias Geyer,et al.  Direct Model Predictive Control: A Review of Strategies That Achieve Long Prediction Intervals for Power Electronics , 2014, IEEE Industrial Electronics Magazine.

[34]  Udaya K. Madawala,et al.  A Model Predictive Direct Current Control Strategy With Predictive References for MV Grid-Connected Converters With $LCL$-Filters , 2015, IEEE Transactions on Power Electronics.

[35]  Daniel E. Quevedo,et al.  Performance of Multistep Finite Control Set Model Predictive Control for Power Electronics , 2015 .

[36]  Eric C. Kerrigan,et al.  Fast FPGA prototyping toolbox for embedded optimization , 2015, 2015 European Control Conference (ECC).

[37]  Daniel E. Quevedo,et al.  Performance of Multistep Finite Control Set Model Predictive Control for Power Electronics , 2014, IEEE Transactions on Power Electronics.

[38]  Udaya K. Madawala,et al.  Model Predictive Direct Current Control of Modular Multilevel Converters: Modeling, Analysis, and Experimental Evaluation , 2015, IEEE Transactions on Power Electronics.

[39]  T. Geyer,et al.  Suboptimal search strategies with bounded computational complexity to solve long-horizon direct model predictive control problems , 2015, 2015 IEEE Energy Conversion Congress and Exposition (ECCE).

[40]  Stephen P. Boyd,et al.  Approximate dynamic programming via iterated Bellman inequalities , 2015 .

[41]  Paul N. Beuchat,et al.  Approximate Dynamic Programming : a Q-Function Approach , 2016 .

[42]  Hamed Nademi,et al.  Implicit Finite Control Set Model Predictive current Control for Modular Multilevel Converter based on IPA-SQP algorithm , 2016, 2016 IEEE Applied Power Electronics Conference and Exposition (APEC).