Neural Network with Specialized Knowledge for Forecasting Intermittent Demand
暂无分享,去创建一个
Geraldo P. R. Filho | Jéssica Mendes Jorge | Andrea Cristina dos Santos | Alexandre Crepory Abbott de Oliveira
[1] J. D. Croston. Forecasting and Stock Control for Intermittent Demands , 1972 .
[2] J. Boylan,et al. The accuracy of intermittent demand estimates , 2005 .
[3] R. Quintana,et al. Lumpy demand forecasting using neural networks , 2001, PICMET '01. Portland International Conference on Management of Engineering and Technology. Proceedings Vol.1: Book of Summaries (IEEE Cat. No.01CH37199).
[4] Spyros Makridakis,et al. The M3-Competition: results, conclusions and implications , 2000 .
[5] Tong Heng Lee,et al. Geometrical interpretation and architecture selection of MLP , 2005, IEEE Transactions on Neural Networks.
[6] Adriano O. Solis,et al. The Accuracy of Non‐traditional versus Traditional Methods of Forecasting Lumpy Demand , 2012 .
[7] J. Boylan,et al. On the bias of intermittent demand estimates , 2001 .
[8] J. Scott Armstrong,et al. Evaluation of Extrapolative Forecasting Methods: Results of a Survey of Academicians and Practitioners , 1982 .
[9] 郑俊. Maintenance , 2002, The Islamic Law of Personal Status.
[10] Aris A. Syntetos,et al. On the categorization of demand patterns , 2005, J. Oper. Res. Soc..
[11] J. Boylan,et al. Forecasting for Items with Intermittent Demand , 1996 .
[12] Ruud H. Teunter,et al. Intermittent demand: Linking forecasting to inventory obsolescence , 2011, Eur. J. Oper. Res..
[13] José Manuel Cunha Leal Molarinho Carmo,et al. Adaptive forecasting of irregular demand processes , 2004, Eng. Appl. Artif. Intell..
[14] David F. Pyke,et al. Inventory and Production Management in Supply Chains , 2016 .
[15] Barbara Pfeffer,et al. Smoothing Forecasting And Prediction Of Discrete Time Series , 2016 .
[16] Bhushan S. Purohit,et al. Investigating the value of integrated operations planning: A case-based approach from automotive industry , 2018, Int. J. Prod. Res..
[17] Alberto Regattieri,et al. Single-hidden layer neural networks for forecasting intermittent demand , 2017 .