On the use of particle filtering for maximum likelihood parameter estimation
暂无分享,去创建一个
[1] G. Peters,et al. Monte Carlo Approximations for General State-Space Models , 1998 .
[2] Arnaud Doucet,et al. A survey of convergence results on particle filtering methods for practitioners , 2002, IEEE Trans. Signal Process..
[3] M. Pitt,et al. Filtering via Simulation: Auxiliary Particle Filters , 1999 .
[4] Nando de Freitas,et al. Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.
[5] Pierre Del Moral,et al. Feynman-Kac formulae , 2004 .
[6] Branko Ristic,et al. Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .
[7] A. Doucet,et al. Parameter estimation in general state-space models using particle methods , 2003 .
[8] Eric Moulines,et al. Inference in hidden Markov models , 2010, Springer series in statistics.
[9] C. Olivier,et al. Recursive computation of smoothed functionals of hidden Markovian processes using a particle approximation , 2001 .
[10] Neil J. Gordon,et al. Editors: Sequential Monte Carlo Methods in Practice , 2001 .
[11] Simon J. Godsill,et al. On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..
[12] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[13] P. Moral. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .