Central Limit Theorem for Locally Interacting Fermi Gas

We consider a locally interacting Fermi gas in its natural non-equilibrium steady state and prove the Quantum Central Limit Theorem (QCLT) for a large class of observables. A special case of our results concerns finitely many free Fermi gas reservoirs coupled by local interactions. The QCLT for flux observables, together with the Green-Kubo formulas and the Onsager reciprocity relations previously established [JOP4], complete the proof of the Fluctuation-Dissipation Theorem and the development of linear response theory for this class of models.

[1]  Greg Kuperberg A tracial quantum central limit theorem , 2002 .

[2]  Elliott H. Lieb,et al.  On the superradiant phase transition for molecules in a quantized radiation field: the dicke maser model , 1973 .

[3]  O. Bratteli Operator Algebras And Quantum Statistical Mechanics , 1979 .

[4]  Topics in quantum statistical mechanics and operator algebras , 2001, math-ph/0107009.

[5]  A. Verbeure,et al.  Theory of quantum fluctuations and the Onsager relations , 1989 .

[6]  Carlangelo Liverani,et al.  Central Limit Theorem for Deterministic Systems , 1995 .

[7]  E. Olivieri,et al.  Large deviations and metastability: Large deviations and statistical mechanics , 2005 .

[8]  D. W. Robinson,et al.  Stability properties and the KMS condition , 1978 .

[9]  D Goderis,et al.  Central limit theorem for mixing quantum systems and the CCR-algebra of fluctuations , 1989 .

[10]  Taku Matsui,et al.  Bosonic Central Limit Theorem for the One-Dimensional XY Model , 2002 .

[11]  Vojkan Jaksic,et al.  Transport properties of quasi-free fermions , 2007 .

[12]  Quantum central limit theorems for strongly mixing random variables , 1985 .

[13]  Elliott H. Lieb,et al.  Phase Transitions in Reservoir-Driven Open Systems with Applications to Lasers and Superconductors , 1973 .

[14]  V. Malyshev,et al.  Unitary equivalence of temperature dynamics for ideal and locally perturbed Fermi-gas , 1983 .

[15]  Y. Ogata,et al.  The Green-Kubo Formula and the Onsager Reciprocity Relations in Quantum Statistical Mechanics , 2006 .

[16]  P. Meyer,et al.  Quantum Probability for Probabilists , 1993 .

[17]  C. Landim,et al.  Scaling Limits of Interacting Particle Systems , 1998 .

[18]  D. Petz,et al.  Quantum Entropy and Its Use , 1993 .

[19]  N. Giri,et al.  An algebraic version of the central limit theorem , 1978 .

[20]  A note on the entropy production formula , 2003 .

[21]  C. Pillet,et al.  On Entropy Production in Quantum Statistical Mechanics , 2001 .

[22]  C. Pillet,et al.  Mathematical Theory of Non-Equilibrium Quantum Statistical Mechanics , 2002 .

[23]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[24]  R. Haag Quantum field theories with composite particles and asymptotic conditions , 1958 .

[25]  Jan Dereziński Boson free fields as a limit of fields of a more general type , 1985 .

[26]  C. Pillet,et al.  The Green-Kubo Formula for the Spin-Fermion System , 2006 .

[27]  E. B. Davies Quantum theory of open systems , 1976 .

[28]  Natural Nonequilibrium States in Quantum Statistical Mechanics , 1999, math-ph/9906005.

[29]  Vojkan Jaksic,et al.  Topics in nonequilibrium quantum statistical mechanics , 2006 .

[30]  R. Haag The framework of quantum field theory , 1959 .

[31]  E. Lieb,et al.  Equilibrium Statistical Mechanics of Matter Interacting with the Quantized Radiation Field , 1973 .

[32]  V. Malyshev,et al.  Spin interaction with an ideal Fermi gas , 1987 .

[33]  E. Davies,et al.  Markovian master equations , 1974 .

[34]  Quantum Probability and Applications II , 1985 .

[35]  M. Toda,et al.  In: Statistical physics II , 1985 .

[36]  J. Fröhlich,et al.  0 21 20 62 v 1 2 0 D ec 2 00 2 Dissipative Transport : Thermal Contacts and Tunnelling Junctions , 2009 .

[37]  Quantum central limit and coarse graining , 1990 .

[38]  C. Pillet,et al.  Non-Equilibrium Steady States of Finite¶Quantum Systems Coupled to Thermal Reservoirs , 2002 .

[39]  A. Verbeure,et al.  The smallestC*-algebra for canonical commutations relations , 1973 .

[40]  J. Fröhlich,et al.  Return to equilibrium , 2000 .

[41]  H. Spohn Large Scale Dynamics of Interacting Particles , 1991 .

[42]  Dynamics of fluctuations for quantum lattice systems , 1990 .

[43]  Robin L. Hudson,et al.  A quantum-mechanical central limit theorem , 1971, Journal of Applied Probability.

[44]  R. Ellis,et al.  Entropy, large deviations, and statistical mechanics , 1985 .

[45]  Vojkan Jaksic,et al.  Mathematical Theory of the Wigner-Weisskopf Atom , 2006 .

[46]  C. Pillet Quantum Dynamical Systems , 2006 .

[47]  Vojkan Jaksic,et al.  Topics in non-equilibrium quantum statistical mechanics , 2006 .

[48]  Y. Ogata,et al.  Linear Response Theory for Thermally Driven Quantum Open Systems , 2006 .

[49]  David Ruelle Entropy Production in Quantum Spin Systems , 2001 .

[50]  Dénes Petz,et al.  An invitation to the algebra of canonical commutation relations , 1990 .

[51]  J. Dereziński Introduction to representations of the canonical commutation and anticommutation relations , 2005, math-ph/0511030.

[52]  André Verbeure,et al.  Non-commutative central limits , 1989 .

[53]  P. Billingsley,et al.  Probability and Measure , 1980 .

[54]  Vojkan Jaksic,et al.  On the strict positivity of entropy production , 2006 .

[55]  Yoshiko Ogata,et al.  The Green–Kubo Formula for Locally Interacting Fermionic Open Systems , 2007 .

[56]  On the Algebra of Fluctuation in Quantum Spin Chains , 2002, math-ph/0202011.

[57]  Stability of Bose dynamical systems and branching theory , 1999 .

[58]  André Verbeure,et al.  About the exactness of the linear response theory , 1991 .

[59]  M. Sentís Quantum theory of open systems , 2002 .