Stochastic modeling of anisotropy in multiscale analysis of heterogeneous materials: A comprehensive overview on random matrix approaches

Abstract The aim of this paper is to provide a general overview on random matrix ensembles for modeling stochastic elasticity tensors that exhibit uncertainties on material symmetries. Such an issue is of primal importance in many practical situations involving either a computational or experimental analysis on random heterogeneous materials (such as bones, reinforced composites, etc.). For this purpose, we first define a stochastic measure of anisotropy, the definition of which relies on the use of distances in the set of fourth-order elasticity tensors. We subsequently describe two random matrix ensembles that have been proposed within the framework of information theory and making use of a MaxEnt approach. In particular, we discuss the relevance of each of those with respect to constraints on the proposed anisotropy measure. It is shown that the capability of prescribing the mean distance to a given symmetry class depends, in view of the eigensystem-based characterization, on the behavior of the random eigenvalues. Finally, we propose a procedure allowing for the identification of the stochastic representation, should a set of experimental data be available. The approach, which is based on the use of the maximum likelihood principle, is exemplified in the case of experimental realizations that are almost transversely isotropic.

[1]  Christian Soize,et al.  A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures , 2011 .

[2]  Martin Ostoja-Starzewski,et al.  Universal elastic anisotropy index. , 2008, Physical review letters.

[3]  K. Sab On the homogenization and the simulation of random materials , 1992 .

[4]  Estimating effective elasticity tensors from Christoffel equations , 2009 .

[5]  I. Babuska,et al.  Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation , 2005 .

[6]  A. Migliori,et al.  A general elastic-anisotropy measure , 2006 .

[7]  M. Slawinski,et al.  ON OBTAINING EFFECTIVE ORTHOTROPIC ELASTICITY TENSORS , 2009 .

[8]  R. Cottereau,et al.  Modeling of random anisotropic elastic media and impact on wave propagation , 2010 .

[9]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[10]  I. Tadjbakhsh,et al.  The elastic tensor of given symmetry nearest to an anisotropic elastic tensor , 1963 .

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  S. Chevrot,et al.  Decomposition of the elastic tensor and geophysical applications , 2004 .

[13]  F. Fedorov Theory of Elastic Waves in Crystals , 1968 .

[14]  S. Cowin,et al.  On the Identification of Material Symmetry for Anisotropic Elastic Materials , 1987 .

[15]  W. Voigt,et al.  Lehrbuch der Kristallphysik , 1966 .

[16]  C Soize,et al.  Maximum entropy approach for modeling random uncertainties in transient elastodynamics. , 2001, The Journal of the Acoustical Society of America.

[17]  Richard D. Deveaux,et al.  Applied Smoothing Techniques for Data Analysis , 1999, Technometrics.

[18]  T. Ting Generalized Cowin–Mehrabadi theorems and a direct proof that the number of linear elastic symmetries is eight , 2003 .

[19]  M. Slawinski,et al.  On Obtaining Effective Transversely Isotropic Elasticity Tensors , 2009 .

[20]  L. Thomsen Weak elastic anisotropy , 1986 .

[21]  Peter Hubral Foundations of Anisotropy for Exploration Seismics , 1995 .

[22]  Ioan Bucataru,et al.  Coordinate-free Characterization of the Symmetry Classes of Elasticity Tensors , 2007 .

[23]  Anton van den Hengel,et al.  Semidefinite Programming , 2014, Computer Vision, A Reference Guide.

[24]  N. Ayache,et al.  Log‐Euclidean metrics for fast and simple calculus on diffusion tensors , 2006, Magnetic resonance in medicine.

[25]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[26]  Maher Moakher On the Averaging of Symmetric Positive-Definite Tensors , 2006 .

[27]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[28]  W. Hume-rothery Elasticity and Anelasticity of Metals , 1949, Nature.

[29]  L. Walpole,et al.  Fourth-rank tensors of the thirty-two crystal classes: multiplication tables , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[30]  Maurizio Vianello,et al.  Symmetry classes for elasticity tensors , 1996 .

[31]  M. Slawinski,et al.  Invariant Properties for Finding Distance in Space of Elasticity Tensors , 2007, 0712.1082.

[32]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[33]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[34]  G. Piero,et al.  On the completeness of the crystallographic symmetries in the description of the symmetries of the elastic tensor , 1991 .

[35]  Christian Huet,et al.  Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume , 1994 .

[36]  Roger G. Ghanem,et al.  A Bounded Random Matrix Approach for Stochastic Upscaling , 2009, Multiscale Model. Simul..

[37]  Christian Soize,et al.  Nonparametric stochastic modeling of linear systems with prescribed variance of several natural frequencies , 2008 .

[38]  Christian Soize,et al.  A stochastic model for elasticity tensors with uncertain material symmetries , 2010 .

[39]  Stephen C. Cowin,et al.  A new proof that the number of linear elastic symmetries is eight , 2001 .

[40]  Christian Soize Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators , 2006 .

[41]  S. Cowin,et al.  Six-dimensional orthogonal tensorrepresentation of the rotation about an axis in three dimensions , 1995 .

[42]  Stephen C. Cowin,et al.  EIGENTENSORS OF LINEAR ANISOTROPIC ELASTIC MATERIALS , 1990 .

[43]  Christian Soize,et al.  Non‐Gaussian positive‐definite matrix‐valued random fields with constrained eigenvalues: Application to random elasticity tensors with uncertain material symmetries , 2011 .

[44]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[45]  Andrew N. Norris,et al.  The isotropic material closest to a given anisotropic material , 2005, cond-mat/0509705.

[46]  Christian Huet,et al.  Application of variational concepts to size effects in elastic heterogeneous bodies , 1990 .

[47]  Ing Rj Ser Approximation Theorems of Mathematical Statistics , 1980 .

[48]  Elastic moduli approximation of higher symmetry for the acoustical properties of an anisotropic material. , 2005, The Journal of the Acoustical Society of America.

[49]  Christian Soize A nonparametric model of random uncertainties for reduced matrix models in structural dynamics , 2000 .

[50]  Martin Ostoja-Starzewski,et al.  Scaling function, anisotropy and the size of RVE in elastic random polycrystals , 2008 .

[51]  J. N. Kapur,et al.  Entropy optimization principles with applications , 1992 .

[52]  Martin Ostoja-Starzewski,et al.  Microstructural Randomness and Scaling in Mechanics of Materials , 2007 .

[53]  Stephen P. Boyd,et al.  Generalized Chebyshev Bounds via Semidefinite Programming , 2007, SIAM Rev..

[54]  J. O. Thompson HOOKE'S LAW. , 1926, Science.

[55]  Maher Moakher,et al.  The Closest Elastic Tensor of Arbitrary Symmetry to an Elasticity Tensor of Lower Symmetry , 2006, cond-mat/0608311.

[56]  A. Bona,et al.  Material symmetries of elasticity tensors , 2004 .

[57]  J. Rychlewski,et al.  On Hooke's law☆ , 1984 .