Existence results for nonlocal boundary value problems of nonlinear fractional q-difference equations

In this paper, we study a nonlinear fractional q-difference equation with nonlocal boundary conditions. The existence of solutions for the problem is shown by applying some well-known tools of fixed-point theory such as Banach’s contraction principle, Krasnoselskii’s fixed-point theorem, and the Leray-Schauder nonlinear alternative. Some illustrating examples are also discussed.MSC:34A08, 39A05, 39A12, 39A13.

[1]  P. Eloe,et al.  A transform method in discrete fractional calculus , 2007 .

[2]  Jun Yang,et al.  Existence of solutions for multi-point boundary value problem of fractional q-difference equation , 2011 .

[3]  A. Alsaedi,et al.  Existence results for Caputo type fractional differential equations with four-point nonlocal fractional integral boundary conditions , 2012 .

[4]  F. H. Jackson XI.—On q-Functions and a certain Difference Operator , 1909, Transactions of the Royal Society of Edinburgh.

[5]  Ravi P. Agarwal,et al.  Certain fractional q-integrals and q-derivatives , 1969, Mathematical Proceedings of the Cambridge Philosophical Society.

[6]  Rui A. C. Ferreira,et al.  Nontrivial solutions for fractional q-difference boundary value problems , 2010 .

[7]  C. Goodrich On discrete sequential fractional boundary value problems , 2012 .

[8]  Neville J. Ford,et al.  Fractional boundary value problems: Analysis and numerical methods , 2011 .

[9]  M Rajkovic Predrag,et al.  Fractional integrals and derivatives in q-calculus , 2007 .

[10]  V. Gafiychuk,et al.  Mathematical modeling of time fractional reaction-diffusion systems , 2008 .

[11]  I. Podlubny Fractional differential equations , 1998 .

[12]  Ravi P. Agarwal,et al.  A Survey on Semilinear Differential Equations and Inclusions Involving Riemann-Liouville Fractional Derivative , 2009 .

[13]  O. Agrawal,et al.  Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering , 2007 .

[14]  D. O’Regan,et al.  A Nagumo-like uniqueness theorem for fractional differential equations , 2011 .

[15]  Ahmed Alsaedi,et al.  New Existence Results for Nonlinear Fractional Differential Equations with Three-Point Integral Boundary Conditions , 2011 .

[16]  Bashir Ahmad,et al.  Boundary Value Problems for -Difference Inclusions , 2011 .

[17]  Thomas Ernst,et al.  The history of q-calculus and a new method , 2000 .

[18]  Paul W. Eloe,et al.  Two-point boundary value problems for finite fractional difference equations , 2011 .

[19]  Bashir Ahmad,et al.  NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS AND INCLUSIONS OF ARBITRARY ORDER AND MULTI-STRIP BOUNDARY CONDITIONS , 2012 .

[20]  Juan J. Nieto,et al.  Global attractivity for nonlinear fractional differential equations , 2012 .

[21]  Miomir S. Stanković,et al.  On q–Analogues of Caputo Derivative and Mittag–Leffler Function , 2007 .

[22]  F. H. Jackson q-Difference Equations , 1910 .

[23]  K. Diethelm,et al.  Fractional Calculus: Models and Numerical Methods , 2012 .

[24]  Christopher S. Goodrich,et al.  Continuity of solutions to discrete fractional initial value problems , 2010, Comput. Math. Appl..

[25]  C. Goodrich,et al.  SOLUTIONS TO A DISCRETE RIGHT-FOCAL FRACTIONAL BOUNDARY VALUE PROBLEM , 2010 .

[26]  Lingju Kong,et al.  Positive solutions for a class of higher order boundary value problems with fractional q-derivatives , 2012, Appl. Math. Comput..

[27]  Ahmed Alsaedi,et al.  A study of nonlinear Langevin equation involving two fractional orders in different intervals , 2012 .

[28]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[29]  Mizan Rahman,et al.  Basic Hypergeometric Series , 1990 .

[30]  Lishan Liu,et al.  Positive solutions for a nonlocal fractional differential equation , 2011 .

[31]  I. Sengupta,et al.  Solution to a nonlinear Black-Scholes equation , 2011 .

[32]  Moustafa El-Shahed,et al.  Positive Solutions for Boundary Value Problem of Nonlinear Fractional Differential Equation , 2007 .

[33]  Rui A. C. Ferreira,et al.  Positive solutions for a class of boundary value problems with fractional q-differences , 2011, Comput. Math. Appl..

[34]  S. Ntouyas,et al.  Boundary value problems for q-difference inclusions , 2011 .

[35]  Delfim F. M. Torres,et al.  Fractional Derivatives and Integrals on Time Scales via the Inverse Generalized Laplace Transform , 2010, 1012.1555.

[36]  C. Buse,et al.  Weak Rolewicz's theorem in Hilbert spaces , 2012 .

[37]  D. R. Smart Fixed Point Theorems , 1974 .

[38]  Christopher S. Goodrich,et al.  Existence of a positive solution to a system of discrete fractional boundary value problems , 2011, Appl. Math. Comput..

[39]  Ravi P. Agarwal,et al.  On nonlocal fractional boundary value problems , 2011 .

[40]  Jeffrey W Lyons,et al.  Differentiation of Solutions of Nonlocal Boundary Value Problems with Respect to Boundary Data , 2011 .

[41]  Delfim F. M. Torres,et al.  Discrete-time fractional variational problems , 2010, Signal Process..

[42]  Waleed A. Al-Salam Some Fractional q -Integrals and q -Derivatives , 1966 .

[43]  Moustafa El-Shahed,et al.  Positive Solutions for Boundary Value Problem of Nonlinear Fractional q-Difference Equation , 2011 .

[44]  V. V. Gafiychuk,et al.  Mathematical modeling of different types of instabilities in time fractional reaction-diffusion systems , 2010, Comput. Math. Appl..

[45]  Ahmed Alsaedi,et al.  A study of second-order q-difference equations with boundary conditions , 2012, Advances in Difference Equations.

[46]  P. Eloe,et al.  Linear systems of fractional nabla difference equations , 2011 .