Whole-Genome Resequencing Reveals Extensive Natural Variation in the Model Green Alga Chlamydomonas reinhardtii[OPEN]

Whole-genome resequencing of Chlamydomonas reveals enormous intraspecific diversity and a reservoir of naturally occurring variation, including candidate loss-of-function alleles. We performed whole-genome resequencing of 12 field isolates and eight commonly studied laboratory strains of the model organism Chlamydomonas reinhardtii to characterize genomic diversity and provide a resource for studies of natural variation. Our data support previous observations that Chlamydomonas is among the most diverse eukaryotic species. Nucleotide diversity is ∼3% and is geographically structured in North America with some evidence of admixture among sampling locales. Examination of predicted loss-of-function mutations in field isolates indicates conservation of genes associated with core cellular functions, while genes in large gene families and poorly characterized genes show a greater incidence of major effect mutations. De novo assembly of unmapped reads recovered genes in the field isolates that are absent from the CC-503 assembly. The laboratory reference strains show a genomic pattern of polymorphism consistent with their origin as the recombinant progeny of a diploid zygospore. Large duplications or amplifications are a prominent feature of laboratory strains and appear to have originated under laboratory culture. Extensive natural variation offers a new source of genetic diversity for studies of Chlamydomonas, including naturally occurring alleles that may prove useful in studies of gene function and the dissection of quantitative genetic traits.

[1]  M. Pellegrini,et al.  Chlamydomonas Genome Resource for Laboratory Strains Reveals a Mosaic of Sequence Variation, Identifies True Strain Histories, and Enables Strain-Specific Studies , 2015, Plant Cell.

[2]  Robert E. Jinkerson,et al.  Molecular techniques to interrogate and edit the Chlamydomonas nuclear genome. , 2015, The Plant journal : for cell and molecular biology.

[3]  Jinsheng Lai,et al.  Patterns of genomic changes with crop domestication and breeding. , 2015, Current opinion in plant biology.

[4]  Paul B Rainey,et al.  Experimental evolution reveals hidden diversity in evolutionary pathways , 2015, eLife.

[5]  D. Nelson,et al.  Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling , 2014, Front. Bioeng. Biotechnol..

[6]  Ian K. Blaby,et al.  The Chlamydomonas genome project: a decade on. , 2014, Trends in plant science.

[7]  Georg Haberer,et al.  The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication , 2014, Nature Genetics.

[8]  M. Tomita,et al.  Hybridization between Japanese and North American Chlamydomonas reinhardtii (Volvocales, Chlorophyceae) , 2014 .

[9]  M. Jonikas,et al.  High-Throughput Genotyping of Green Algal Mutants Reveals Random Distribution of Mutagenic Insertion Sites and Endonucleolytic Cleavage of Transforming DNA[W][OPEN] , 2014, Plant Cell.

[10]  Debashish Bhattacharya,et al.  Applications of next-generation sequencing to unravelling the evolutionary history of algae. , 2014, International journal of systematic and evolutionary microbiology.

[11]  Matteo Cianchetti,et al.  Soft Robotics: New Perspectives for Robot Bodyware and Control , 2014, Front. Bioeng. Biotechnol..

[12]  Matthew Fraser,et al.  InterProScan 5: genome-scale protein function classification , 2014, Bioinform..

[13]  Michele Morgante,et al.  Structural variation and genome complexity: is dispensable really dispensable? , 2014, Current opinion in plant biology.

[14]  S. Dutcher,et al.  Whole Genome Sequencing Identifies a Deletion in Protein Phosphatase 2A That Affects Its Stability and Localization in Chlamydomonas reinhardtii , 2013, PLoS genetics.

[15]  Jun Li,et al.  Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum , 2013, Nature Communications.

[16]  Peter L. Freddolino,et al.  Bacterial Adaptation through Loss of Function , 2013, PLoS genetics.

[17]  Sarah R. Smith,et al.  Metabolic and cellular organization in evolutionarily diverse microalgae as related to biofuels production. , 2013, Current opinion in chemical biology.

[18]  G. Laidò,et al.  Plant Nucleotide Binding Site–Leucine-Rich Repeat (NBS-LRR) Genes: Active Guardians in Host Defense Responses , 2013, International journal of molecular sciences.

[19]  K. Wright,et al.  Short read sequencing in studies of natural variation and adaptation. , 2013, Current opinion in plant biology.

[20]  Thomas M. Keane,et al.  RetroSeq: transposable element discovery from next-generation sequencing data , 2013, Bioinform..

[21]  Daniel Garrigan,et al.  POPBAM: Tools for Evolutionary Analysis of Short Read Sequence Alignments , 2013, Evolutionary bioinformatics online.

[22]  Jun Wang,et al.  Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing , 2013, BMC Genomics.

[23]  N. Colegrave,et al.  Estimate of the Spontaneous Mutation Rate in Chlamydomonas reinhardtii , 2012, Genetics.

[24]  Thomas G. Doak,et al.  Drift-barrier hypothesis and mutation-rate evolution , 2012, Proceedings of the National Academy of Sciences.

[25]  P. Andolfatto,et al.  Revisiting an Old Riddle: What Determines Genetic Diversity Levels within Species? , 2012, PLoS biology.

[26]  I. M. Ehrenreich,et al.  Genome-Wide Characterization of Genetic Variation in the Unicellular, Green Alga Chlamydomonas reinhardtii , 2012, PloS one.

[27]  Pablo Cingolani,et al.  © 2012 Landes Bioscience. Do not distribute. , 2022 .

[28]  Joseph K. Pickrell,et al.  A Systematic Survey of Loss-of-Function Variants in Human Protein-Coding Genes , 2012, Science.

[29]  Peer Bork,et al.  Younger Genes Are Less Likely to Be Essential than Older Genes, and Duplicates Are Less Likely to Be Essential than Singletons of the Same Age , 2012, Molecular biology and evolution.

[30]  Alan L. Kwan,et al.  Whole-Genome Sequencing to Identify Mutants and Polymorphisms in Chlamydomonas reinhardtii , 2012, G3: Genes | Genomes | Genetics.

[31]  J. Umen,et al.  Genomics of Volvocine Algae. , 2012, Advances in botanical research.

[32]  Lin Fang,et al.  Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes , 2011, Nature Biotechnology.

[33]  Karsten M. Borgwardt,et al.  Whole-genome sequencing of multiple Arabidopsis thaliana populations , 2011, Nature Genetics.

[34]  Vipin T. Sreedharan,et al.  Multiple reference genomes and transcriptomes for Arabidopsis thaliana , 2011, Nature.

[35]  C. Catalanotti,et al.  Mutagenesis and phenotypic selection as a strategy toward domestication of Chlamydomonas reinhardtii strains for improved performance in photobioreactors , 2011, Photosynthesis Research.

[36]  A. Grossman,et al.  The GreenCut2 Resource, a Phylogenomically Derived Inventory of Proteins Specific to the Plant Lineage* , 2011, The Journal of Biological Chemistry.

[37]  Y. Li-Beisson,et al.  Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves , 2011, BMC biotechnology.

[38]  Liang Tang,et al.  PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database , 2010, Nucleic Acids Res..

[39]  Bo Wang,et al.  Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection , 2010, Nature Genetics.

[40]  Emmanuel Barillot,et al.  SVDetect: a tool to identify genomic structural variations from paired-end and mate-pair sequencing data , 2010, Bioinform..

[41]  J. Jurka,et al.  Genomic Analysis of Organismal Complexity in the Multicellular Green Alga Volvox carteri , 2010, Science.

[42]  M. Pellegrini,et al.  Evolution of an Expanded Sex-Determining Locus in Volvox , 2010, Science.

[43]  Philip Owende,et al.  Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products , 2010 .

[44]  D. Botstein,et al.  Optimized detection of sequence variation in heterozygous genomes using DNA microarrays with isothermal-melting probes , 2010, Proceedings of the National Academy of Sciences.

[45]  L. Stein,et al.  JBrowse: a next-generation genome browser. , 2009, Genome research.

[46]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[47]  Daniel Karcher,et al.  Generation of Chlamydomonas strains that efficiently express nuclear transgenes. , 2009, The Plant journal : for cell and molecular biology.

[48]  Elizabeth H. Harris,et al.  Introduction to Chlamydomonas and its laboratory use , 2009 .

[49]  David Botstein,et al.  The Repertoire and Dynamics of Evolutionary Adaptations to Controlled Nutrient-Limited Environments in Yeast , 2008, PLoS genetics.

[50]  D. Smith,et al.  Nucleotide diversity in the mitochondrial and nuclear compartments of Chlamydomonas reinhardtii: investigating the origins of genome architecture , 2008, BMC Evolutionary Biology.

[51]  Anton Steen,et al.  LysM, a widely distributed protein motif for binding to (peptido)glycans , 2008, Molecular microbiology.

[52]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[53]  Y. Narusaka,et al.  CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis , 2007, Proceedings of the National Academy of Sciences.

[54]  Colin N. Dewey,et al.  Population Genomics: Whole-Genome Analysis of Polymorphism and Divergence in Drosophila simulans , 2007, PLoS biology.

[55]  Sara L. Zimmer,et al.  The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions , 2007, Science.

[56]  Richard M. Clark,et al.  Common Sequence Polymorphisms Shaping Genetic Diversity in Arabidopsis thaliana , 2007, Science.

[57]  E. Fernández,et al.  Inorganic nitrogen assimilation in Chlamydomonas. , 2007, Journal of experimental botany.

[58]  Laura Wegener Parfrey,et al.  Evaluating Support for the Current Classification of Eukaryotic Diversity , 2006, PLoS genetics.

[59]  J. Bailey-Serres,et al.  Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice , 2006, Nature.

[60]  Yoko Nishizawa,et al.  Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[61]  P. Smouse,et al.  genalex 6: genetic analysis in Excel. Population genetic software for teaching and research , 2006 .

[62]  P. Lefebvre,et al.  Extensive restriction fragment length polymorphisms in a new isolate ofChlamydomonas reinhardtii , 1988, Current Genetics.

[63]  T. Pröschold,et al.  Portrait of a Species , 2005, Genetics.

[64]  G. Pazour,et al.  Proteomic analysis of a eukaryotic cilium , 2005, The Journal of cell biology.

[65]  Burkhard Morgenstern,et al.  AUGUSTUS: a web server for gene finding in eukaryotes , 2004, Nucleic Acids Res..

[66]  Ronald W. Davis,et al.  Role of duplicate genes in genetic robustness against null mutations , 2003, Nature.

[67]  E. H. Harris,et al.  CHLAMYDOMONAS AS A MODEL ORGANISM. , 2003, Annual review of plant physiology and plant molecular biology.

[68]  P. Lefebvre,et al.  Development and characterization of genome-wide single nucleotide polymorphism markers in the green alga Chlamydomonas reinhardtii. , 2001, Plant physiology.

[69]  D. Allen,et al.  Over-expression of cytosolic glutamine synthetase increases photosynthesis and growth at low nitrogen concentrations. , 2001, Journal of experimental botany.

[70]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[71]  M Koornneef,et al.  Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. , 2000, Trends in plant science.

[72]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[73]  J. Rochaix,et al.  Chlamydomonas genetics, a tool for the study of bioenergetic pathways. , 1998, Biochimica et biophysica acta.

[74]  J K Kelly,et al.  A test of neutrality based on interlocus associations. , 1997, Genetics.

[75]  G. Bell,et al.  Experimental evolution in Chlamydomonas. I. Short-term selection in uniform and diverse environments , 1997, Heredity.

[76]  D. Kirk,et al.  Intron sequences provide a tool for high-resolution phylogenetic analysis of volvocine algae , 1997, Current Genetics.

[77]  G. Bell,et al.  NOTE. ISOLATION OF FOUR NEW STRAINS OF CHLAMYDOMONAS REINHARDTII (CHLOROPHYTA) FROM SOIL SAMPLES 1 , 1994 .

[78]  J. Jarvik,et al.  ISOLATION AND PRELIMINARY CHARACTERIZATION OF THREE CHLAMYDOMONAS STRAINS INTERFERTILE WITH CHLAMYDOMONAS REINHARDTII (CHLOROPHYTA) 1 , 1992 .

[79]  K. Kindle High-frequency nuclear transformation of Chlamydomonas reinhardtii. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[80]  U. Klein,et al.  Localization of Nitrogen-Assimilating Enzymes in the Chloroplast of Chlamydomonas reinhardtii. , 1988, Plant physiology.

[81]  M. Nei Molecular Evolutionary Genetics , 1987 .

[82]  M. Nei,et al.  Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. , 1986, Molecular biology and evolution.

[83]  S. Jeffery Evolution of Protein Molecules , 1979 .

[84]  T. Jukes CHAPTER 24 – Evolution of Protein Molecules , 1969 .

[85]  R W Hoshaw,et al.  CHLAMYDOMONAS SMITHII SP. NOV.–A CHLAMYDOMONAD INTERFERTILE WITH CHLAMYDOMONAS REINHARDTIP , 1966, Journal of phycology.