Retinal tubulin binds macular carotenoids.

PURPOSE To investigate the biochemical mechanisms responsible for the specific uptake, concentration, and stabilization of the carotenoids lutein and zeaxanthin in the macula. METHODS Soluble extracts of bovine retina mixed with radioactive carotenoids were purified by hydrophobic interaction, ion exchange, and gel filtration chromatography. Carotenoid-associated proteins in these purified preparations were identified through photoaffinity labeling and protein microsequencing. Similar purifications on human macular tissue without the addition of exogenous carotenoids also were performed. RESULTS Experiments on bovine retinal tissue demonstrated that tubulin is the major soluble carotenoid-binding protein. When soluble extracts of human macular protein were examined, the endogenous carotenoids lutein and zeaxanthin were found to copurify with tubulin. CONCLUSIONS Tubulin is found in abundance in the receptor axon layer of the fovea, where it can serve as a locus for the deposition of the high concentrations of macular carotenoids found there. The binding interaction of carotenoids and tubulin in the Henle's fiber layer could play an important role in the photoprotective effects of the macular carotenoids against the progression of age-related macular degeneration. The association of carotenoids with tubulin, a protein that can form highly ordered linear arrays, may provide an explanation for the dichroic phenomenon of Haidinger's brushes.