Light-sheets and smart microscopy, an exciting future is dawning

[1]  Alison L. Barth,et al.  Magnify is a universal molecular anchoring strategy for expansion microscopy , 2023, Nature Biotechnology.

[2]  Ming Y. Lu,et al.  Fast and scalable search of whole-slide images via self-supervised deep learning , 2022, Nature Biomedical Engineering.

[3]  J. Lippincott-Schwartz,et al.  Rationalized deep learning super-resolution microscopy for sustained live imaging of rapid subcellular processes , 2022, Nature Biotechnology.

[4]  Tianrui Li,et al.  Image inpainting based on deep learning: A review , 2022, Inf. Fusion.

[5]  Talley J. Lambert,et al.  Resolution doubling in light-sheet microscopy via oblique plane structured illumination , 2022, bioRxiv.

[6]  Michael Y. Gerner,et al.  A hybrid open-top light-sheet microscope for versatile multi-scale imaging of cleared tissues , 2022, Nature Methods.

[7]  J. Ruess,et al.  Enabling reactive microscopy with MicroMator , 2022, Nature Communications.

[8]  Marius Pachitariu,et al.  Cellpose 2.0: how to train your own model , 2022, bioRxiv.

[9]  Daniel A. Colón-Ramos,et al.  Incorporating the image formation process into deep learning improves network performance , 2022, bioRxiv.

[10]  R. Fiolka,et al.  Singularity Containers Improve Reproducibility and Ease of Use in Computational Image Analysis Workflows , 2022, Frontiers in Bioinformatics.

[11]  J. Lichtman,et al.  Tissue clearing , 2021, Nature Reviews Methods Primers.

[12]  S. Preibisch,et al.  Light sheet fluorescence microscopy , 2021, Nature Reviews Methods Primers.

[13]  Kevin M. Dean,et al.  Isotropic imaging across spatial scales with axially swept light-sheet microscopy , 2021, Nature Protocols.

[14]  Jonatan Alvelid,et al.  Event-triggered STED imaging , 2021, bioRxiv.

[15]  Kazuhiro Kurokawa,et al.  Adaptive optics for high-resolution imaging , 2021, Nature Reviews Methods Primers.

[16]  H. Rigneault,et al.  An adaptive microscope for the imaging of biological surfaces , 2021, Light: Science & Applications.

[17]  S. Manley,et al.  Event-driven acquisition for content-enriched microscopy , 2021, bioRxiv.

[18]  Xavier Casas Moreno,et al.  ImSwitch: Generalizing microscope control in Python , 2021, J. Open Source Softw..

[19]  A. Pertsinidis,et al.  Volumetric interferometric lattice light-sheet imaging , 2021, Nature Biotechnology.

[20]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[21]  C. D'Andrea,et al.  Compressed sensing in fluorescence microscopy. , 2021, Progress in biophysics and molecular biology.

[22]  P. Halvorsen,et al.  Meta-learning with implicit gradients in a few-shot setting for medical image segmentation , 2021, Comput. Biol. Medicine.

[23]  E. Rebollo,et al.  AutoScanJ: A Suite of ImageJ Scripts for Intelligent Microscopy , 2021, Frontiers in Bioinformatics.

[24]  Shalin B. Mehta,et al.  Pycro-Manager: open-source software for customized and reproducible microscope control , 2021, Nature Methods.

[25]  J. Bouillard,et al.  NIR-quantum dots in biomedical imaging and their future , 2021, iScience.

[26]  Yusha Li,et al.  Minutes-timescale 3D isotropic imaging of entire organs at subcellular resolution by content-aware compressed-sensing light-sheet microscopy , 2021, Nature Communications.

[27]  L. Waller,et al.  Learned adaptive multiphoton illumination microscopy for large-scale immune response imaging , 2020, Nature Communications.

[28]  Erik S. Welf,et al.  Actin-Membrane Release Initiates Cell Protrusions. , 2020, Developmental cell.

[29]  P. Tomançak,et al.  Regionalized tissue fluidization is required for epithelial gap closure during insect gastrulation , 2020, Nature Communications.

[30]  Bi-Chang Chen,et al.  A Versatile Tiling Light Sheet Microscope for Imaging of Cleared Tissues. , 2020, Cell reports.

[31]  Mengyao Zhao,et al.  Rational Design of Near-Infrared-II Organic Molecular Dyes for Bioimaging and Biosensing , 2020, ACS Materials Letters.

[32]  V. Schubert,et al.  Prospects and limitations of expansion microscopy in chromatin ultrastructure determination , 2020, Chromosome Research.

[33]  Bi-Chang Chen,et al.  Rapid high resolution 3D imaging of expanded biological specimens with lattice light sheet microscopy. , 2020, Methods.

[34]  J. Huisken,et al.  Image quality guided smart rotation improves coverage in microscopy , 2020, Nature Communications.

[35]  K. Charan,et al.  An adaptive excitation source for high speed multiphoton microscopy , 2019, Nature Methods.

[36]  Kevin M. Dean,et al.  Light-Sheet Microscopy of Cleared Tissues with Isotropic, Subcellular Resolution , 2019, Nature Methods.

[37]  Willem Waegeman,et al.  Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods , 2019, Machine Learning.

[38]  Philipp J. Keller,et al.  Light-Sheet Microscopy and Its Potential for Understanding Developmental Processes. , 2019, Annual review of cell and developmental biology.

[39]  A. Holtmaat,et al.  The mesoSPIM initiative – open-source light-sheet microscopes for imaging cleared tissue , 2019, Nature Methods.

[40]  Taghi M. Khoshgoftaar,et al.  A survey on Image Data Augmentation for Deep Learning , 2019, Journal of Big Data.

[41]  J. Huisken,et al.  Cerebrovascular endothelial cells form transient Notch‐dependent cystic structures in zebrafish , 2019, EMBO reports.

[42]  Markus Rempfler,et al.  Self-organization and symmetry breaking in intestinal organoid development , 2019, Nature.

[43]  Lianqing Liu,et al.  Light Sheet Microscopy in the Near-Infrared II Window , 2019, Nature Methods.

[44]  Michael Y. Gerner,et al.  Multi-immersion open-top light-sheet microscope for high-throughput imaging of cleared tissues , 2019, bioRxiv.

[45]  Marco Castello,et al.  Smart scanning for low-illumination and fast RESOLFT nanoscopy in vivo , 2019, Nature Communications.

[46]  Gerald M. Rubin,et al.  Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution , 2019, Science.

[47]  T. Nemoto,et al.  Optical clearing of living brains with MAGICAL to extend in vivo imaging , 2019, bioRxiv.

[48]  E. Boyden,et al.  Expansion microscopy: principles and uses in biological research , 2018, Nature Methods.

[49]  Jan Huisken,et al.  Multi-sample SPIM image acquisition, processing and analysis of vascular growth in zebrafish , 2018, Development.

[50]  Srinivas C. Turaga,et al.  In Toto Imaging and Reconstruction of Post-Implantation Mouse Development at the Single-Cell Level , 2018, Cell.

[51]  Philippe Roudot,et al.  Universal Light-Sheet Generation with Field Synthesis , 2018, bioRxiv.

[52]  Stephan Preibisch,et al.  BigStitcher: reconstructing high-resolution image datasets of cleared and expanded samples , 2018, Nature Methods.

[53]  Guillaume Charras,et al.  Automating multimodal microscopy with NanoJ-Fluidics , 2018, bioRxiv.

[54]  Christophe Zimmer,et al.  Deep learning massively accelerates super-resolution localization microscopy , 2018, Nature Biotechnology.

[55]  Loic A. Royer,et al.  Content-aware image restoration: pushing the limits of fluorescence microscopy , 2018, bioRxiv.

[56]  Elliot M. Meyerowitz,et al.  Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms , 2018, Science.

[57]  Stefan W. Hell,et al.  Adaptive-illumination STED nanoscopy , 2017, Proceedings of the National Academy of Sciences.

[58]  C. Norden,et al.  Phototoxicity in live fluorescence microscopy, and how to avoid it , 2017, BioEssays : news and reviews in molecular, cellular and developmental biology.

[59]  Hiroshi Ishikawa,et al.  Globally and locally consistent image completion , 2017, ACM Trans. Graph..

[60]  Pavel Tomancak,et al.  Assessing phototoxicity in live fluorescence imaging , 2017, Nature Methods.

[61]  Bálint Antal,et al.  Image Data Resource: a bioimage data integration and publication platform , 2017, Nature Methods.

[62]  Vanessa Sochat,et al.  Singularity: Scientific containers for mobility of compute , 2017, PloS one.

[63]  David A. Patterson,et al.  In-datacenter performance analysis of a tensor processing unit , 2017, 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA).

[64]  Edward S. Boyden,et al.  Iterative expansion microscopy , 2017, Nature Methods.

[65]  Eugene W. Myers,et al.  Adaptive light-sheet microscopy for long-term, high-resolution imaging in living organisms , 2016, Nature Biotechnology.

[66]  Michael Knop,et al.  πSPIM: high NA high resolution isotropic light-sheet imaging in cell culture dishes , 2016, Scientific Reports.

[67]  Jan Huisken,et al.  Fast Fluorescence Microscopy with Light Sheets , 2016, The Biological Bulletin.

[68]  Karl R. Weiss,et al.  A survey of transfer learning , 2016, Journal of Big Data.

[69]  R. Milo,et al.  SnapShot: Timescales in Cell Biology , 2016, Cell.

[70]  Christopher Price,et al.  Seeing through Musculoskeletal Tissues: Improving In Situ Imaging of Bone and the Lacunar Canalicular System through Optical Clearing , 2016, PloS one.

[71]  Laura A. Sordillo,et al.  Transmission in near‐infrared optical windows for deep brain imaging , 2016, Journal of biophotonics.

[72]  Michael Broxton,et al.  SPED Light Sheet Microscopy: Fast Mapping of Biological System Structure and Function , 2015, Cell.

[73]  Gaudenz Danuser,et al.  Deconvolution-free Subcellular Imaging with Axially Swept Light Sheet Microscopy , 2015, Biophysical journal.

[74]  F. Pampaloni,et al.  Light sheet-based fluorescence microscopy (LSFM) for the quantitative imaging of cells and tissues , 2015, Cell and Tissue Research.

[75]  Edward S. Boyden,et al.  Expansion microscopy , 2015, Science.

[76]  R. Mann,et al.  Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms , 2014, Nature Photonics.

[77]  Chiye Li,et al.  Single-shot compressed ultrafast photography at one hundred billion frames per second , 2014, Nature.

[78]  Wesley R. Legant,et al.  Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution , 2014, Science.

[79]  K. Dholakia,et al.  Light-sheet microscopy using an Airy beam , 2014, Nature Methods.

[80]  Martin J. Booth,et al.  Modelling of multi-conjugate adaptive optics for spatially variant aberrations in microscopy , 2013 .

[81]  Citlali Pérez Campos,et al.  High-speed panoramic light-sheet microscopy reveals global endodermal cell dynamics , 2013, Nature Communications.

[82]  Ben Adcock,et al.  BREAKING THE COHERENCE BARRIER: A NEW THEORY FOR COMPRESSED SENSING , 2013, Forum of Mathematics, Sigma.

[83]  Joachim Wittbrodt,et al.  Quantitative analysis of embryogenesis: a perspective for light sheet microscopy. , 2012, Developmental cell.

[84]  Jan Huisken,et al.  Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope , 2012, Development.

[85]  Ke Si,et al.  Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation , 2012, Nature Photonics.

[86]  Lars Hufnagel,et al.  Multiview light-sheet microscope for rapid in toto imaging , 2012, Nature Methods.

[87]  Philipp J. Keller,et al.  Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy , 2012, Nature Methods.

[88]  F. Wise,et al.  In vivo three-photon microscopy of subcortical structures within an intact mouse brain , 2012, Nature Photonics.

[89]  Jan Huisken,et al.  Slicing embryos gently with laser light sheets , 2012, BioEssays : news and reviews in molecular, cellular and developmental biology.

[90]  A. Rohrbach,et al.  Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media , 2012, Nature Communications.

[91]  Timothy C Zhu,et al.  A review of in‐vivo optical properties of human tissues and its impact on PDT , 2011, Journal of biophotonics.

[92]  P. Schwille,et al.  Fluorescence techniques to study lipid dynamics. , 2011, Cold Spring Harbor perspectives in biology.

[93]  Jan Huisken,et al.  Light sheet microscopy for real-time developmental biology. , 2011, Current opinion in genetics & development.

[94]  Philipp J. Keller,et al.  Shedding light on the system: studying embryonic development with light sheet microscopy. , 2011, Current Opinion in Genetics and Development.

[95]  Philipp J. Keller,et al.  Reconstructing embryonic development , 2011, Genesis.

[96]  Nico Stuurman,et al.  Computer Control of Microscopes Using µManager , 2010, Current protocols in molecular biology.

[97]  Zhuang Liu,et al.  A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. , 2009, Nature nanotechnology.

[98]  L. Matzkin,et al.  Egg size, embryonic development time and ovoviviparity in Drosophila species , 2009, Journal of evolutionary biology.

[99]  Uros Krzic,et al.  Light sheet‐based fluorescence microscopy: More dimensions, more photons, and less photodamage , 2008, HFSP journal.

[100]  Ronald T Raines,et al.  Bright ideas for chemical biology. , 2008, ACS chemical biology.

[101]  L. Zon,et al.  Transparent adult zebrafish as a tool for in vivo transplantation analysis. , 2008, Cell stem cell.

[102]  John W Sedat,et al.  Modelling the application of adaptive optics to wide‐field microscope live imaging , 2007, Journal of microscopy.

[103]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[104]  F. Del Bene,et al.  Optical Sectioning Deep Inside Live Embryos by Selective Plane Illumination Microscopy , 2004, Science.

[105]  W. Webb,et al.  Nonlinear magic: multiphoton microscopy in the biosciences , 2003, Nature Biotechnology.

[106]  J. Lippincott-Schwartz,et al.  Development and Use of Fluorescent Protein Markers in Living Cells , 2003, Science.