Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients

In Monte Carlo methods quadrupling the sample size halves the error. In simulations of stochastic partial differential equations (SPDEs), the total work is the sample size times the solution cost of an instance of the partial differential equation. A Multi-level Monte Carlo method is introduced which allows, in certain cases, to reduce the overall work to that of the discretization of one instance of the deterministic PDE. The model problem is an elliptic equation with stochastic coefficients. Multi-level Monte Carlo errors and work estimates are given both for the mean of the solutions and for higher moments. The overall complexity of computing mean fields as well as k-point correlations of the random solution is proved to be of log-linear complexity in the number of unknowns of a single Multi-level solve of the deterministic elliptic problem. Numerical examples complete the theoretical analysis.

[1]  Christoph Schwab,et al.  Sparse Tensor Discretization of Elliptic sPDEs , 2009, SIAM J. Sci. Comput..

[2]  Fabio Nobile,et al.  An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[3]  C. Schwab,et al.  Sparse high order FEM for elliptic sPDEs , 2009 .

[4]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[5]  Andrea Barth,et al.  Multi-level Monte Carlo finite element method for elliptic PDE's with stochastic coefficients , 2010 .

[6]  Siddhartha Mishra,et al.  Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions , 2011 .

[7]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[8]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[9]  Daniel Kressner,et al.  COMPUTING CODIMENSIONS AND GENERIC CANONICAL FORMS FOR GENERALIZED MATRIX PRODUCTS , 2011 .

[10]  Christoph Schwab,et al.  Sparse finite elements for elliptic problems with stochastic loading , 2003, Numerische Mathematik.

[11]  H. Beckert,et al.  J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .

[12]  A. Cohen Numerical Analysis of Wavelet Methods , 2003 .

[13]  R. DeVore,et al.  ANALYTIC REGULARITY AND POLYNOMIAL APPROXIMATION OF PARAMETRIC AND STOCHASTIC ELLIPTIC PDE'S , 2011 .

[14]  BabuskaIvo,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .

[15]  R. L. Naff,et al.  High‐resolution Monte Carlo simulation of flow and conservative transport in heterogeneous porous media: 2. Transport results , 1998 .

[16]  C. R. Dietrich,et al.  Fast and Exact Simulation of Stationary Gaussian Processes through Circulant Embedding of the Covariance Matrix , 1997, SIAM J. Sci. Comput..

[17]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[18]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[19]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[20]  R. DeVore,et al.  Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs , 2010 .

[21]  Christoph Schwab,et al.  Sparse tensor Galerkin discretizations for parametric and random parabolic PDEs I: Analytic regularity and gpc-approximation ! , 2010 .

[22]  M. Giles Improved Multilevel Monte Carlo Convergence using the Milstein Scheme , 2008 .

[23]  R. L. Naff,et al.  High‐resolution Monte Carlo simulation of flow and conservative transport in heterogeneous porous media: 1. Methodology and flow results , 1998 .

[24]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[25]  S. Larsson,et al.  Rate of weak convergence of the finite element method for the stochastic heat equation with additive noise , 2009 .

[26]  Jürgen Potthoff,et al.  Fast simulation of Gaussian random fields , 2011, Monte Carlo Methods Appl..

[27]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .

[28]  C. Schwab,et al.  NUMERICAL SOLUTION OF PARABOLIC EQUATIONS IN HIGH DIMENSIONS , 2004 .

[29]  A. Barth,et al.  A finite element method for martingale-driven stochastic partial differential equations , 2010 .

[30]  P. Oswald,et al.  On additive Schwarz preconditioners for sparse grid discretizations , 1993 .

[31]  Stig Larsson,et al.  Finite Element Approximation of the Linear Stochastic Wave Equation with Additive Noise , 2010, SIAM J. Numer. Anal..

[32]  Siddhartha Mishra,et al.  Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data , 2012, Math. Comput..

[33]  Christoph Schwab,et al.  Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..

[34]  A. Barth,et al.  Simulation of stochastic partial differential equations using finite element methods , 2012 .

[35]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[36]  Albert Cohen,et al.  Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..

[37]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[38]  Christoph Schwab,et al.  Sparse Finite Elements for Stochastic Elliptic Problems – Higher Order Moments , 2003, Computing.