Editor's Introduction and Review: Coordination and Context in Cognitive Science

The role of coordination in cognitive science has been on the rise in recent years, in terms of coordination among neurons, coordination among sensory and motor systems, and coordination among individuals. Research has shown that coordination patterns corresponding to cognitive activities depend on the various contexts in which the underlying interactions are situated. The present issue of Topics in Cognitive Science centers on studies of coordination that address the role of context in shaping or interpreting dynamical patterns of human behavior. This introductory article reviews some of the prior literature leading up to current and future research on coordination and context in cognitive science.

[1]  Christopher T. Kello,et al.  Transient localist representations in critical branching networks , 2017 .

[2]  Michael J. Richardson,et al.  The complexities of keeping the beat: dynamical structure in the nested behaviors of finger tapping , 2015, Attention, Perception, & Psychophysics.

[3]  Christopher T. Kello,et al.  Complexity matching in dyadic conversation. , 2014, Journal of experimental psychology. General.

[4]  Michael J. Spivey,et al.  Spectral convergence in tapping and physiological fluctuations: coupling and independence of 1/f noise in the central and autonomic nervous systems , 2014, Front. Hum. Neurosci..

[5]  J. Kelso,et al.  The Metastable Brain , 2014, Neuron.

[6]  Riccardo Fusaroli,et al.  Dialog as interpersonal synergy , 2014, New Ideas in Psychology.

[7]  G. V. van Orden,et al.  Fractal 1/ƒ dynamics suggest entanglement of measurement and human performance. , 2011, Journal of experimental psychology. Human perception and performance.

[8]  Christopher T. Kello,et al.  Scaling laws in cognitive sciences , 2010, Trends in Cognitive Sciences.

[9]  Christopher T. Kello,et al.  Situated Behavior and the Place of Measurement in Psychological Theory , 2010 .

[10]  Damian G. Stephen,et al.  Dynamics of representational change: entropy, action, and cognition. , 2009, Journal of experimental psychology. Human perception and performance.

[11]  Bruno Galantucci,et al.  Joint Action: Current Perspectives , 2009, Top. Cogn. Sci..

[12]  Daniel C. Richardson,et al.  Conversation and Coordinative Structures , 2009, Top. Cogn. Sci..

[13]  Christopher T. Kello,et al.  The Pervasiveness of 1/f Scaling in Speech Reflects the Metastable Basis of Cognition , 2008, Cogn. Sci..

[14]  Christopher T. Kello,et al.  The emergent coordination of cognitive function. , 2007, Journal of experimental psychology. General.

[15]  Daniel C. Richardson,et al.  The Art of Conversation Is Coordination , 2007, Psychological science.

[16]  J. Kelso,et al.  The Complementary Nature , 2006 .

[17]  W. Freeman,et al.  2005 Special Issue: Metastability, instability, and state transition in neocortex , 2005 .

[18]  John M Beggs,et al.  Critical branching captures activity in living neural networks and maximizes the number of metastable States. , 2005, Physical review letters.

[19]  L. M. Ward,et al.  Synchronous neural oscillations and cognitive processes , 2003, Trends in Cognitive Sciences.

[20]  G. V. van Orden,et al.  Self-organization of cognitive performance. , 2003, Journal of experimental psychology. General.

[21]  K. Linkenkaer-Hansen,et al.  Long-Range Temporal Correlations and Scaling Behavior in Human Brain Oscillations , 2001, The Journal of Neuroscience.

[22]  J. Kelso,et al.  Cortical coordination dynamics and cognition , 2001, Trends in Cognitive Sciences.

[23]  Yasuo Kuniyoshi,et al.  Embedded neural networks: exploiting constraints , 1998, Neural Networks.

[24]  David L. Gilden,et al.  Fluctuations in the Time Required for Elementary Decisions , 1997 .

[25]  E. Thelen Time-scale dynamics and the development of an embodied cognition , 1996 .

[26]  Peter J. Beek,et al.  Dynamical Models of Movement Coordination , 1995 .

[27]  E. Thelen Motor development: A new synthesis. , 1995 .

[28]  J. Kelso,et al.  Symmetry breaking dynamics of human multilimb coordination. , 1992, Journal of experimental psychology. Human perception and performance.

[29]  H. Stanley,et al.  Introduction to Phase Transitions and Critical Phenomena , 1972 .

[30]  Ramesh Balasubramaniam,et al.  Factorization of Force and Timing in Sensorimotor Performance: Long-Range Correlation Properties of Two Different Task Goals , 2018, Top. Cogn. Sci..

[31]  Cees van Leeuwen,et al.  From Adult Finger Tapping to Fetal Heart Beating: Retracing the Role of Coordination in Constituting Agency , 2018, Top. Cogn. Sci..

[32]  Michael J. Richardson,et al.  Creating Time: Social Collaboration in Music Improvisation , 2018, Top. Cogn. Sci..

[33]  Moreno I. Coco,et al.  Performance in a Collaborative Search Task: The Role of Feedback and Alignment , 2018, Top. Cogn. Sci..

[34]  Riccardo Fusaroli,et al.  Investigating Conversational Dynamics: Interactive Alignment, Interpersonal Synergy, and Collective Task Performance , 2016, Cogn. Sci..

[35]  Morten H. Christiansen,et al.  A Recurrent Network Approach to Modeling Linguistic Interaction , 2016, CogSci.

[36]  Gregory J. Mills Dialogue in joint activity: complementarity, convergence and conventionalization , 2014 .

[37]  Christopher T. Kello,et al.  Soft-assembly of sensorimotor function. , 2009, Nonlinear dynamics, psychology, and life sciences.

[38]  Michael J. Richardson,et al.  Dynamics of Interpersonal Coordination , 2008 .

[39]  G. Buzsáki Rhythms of the brain , 2006 .

[40]  J. Tenenbaum,et al.  Special Issue: Probabilistic models of cognition Probabilistic models of cognition: Conceptual foundations , 2006 .

[41]  H. Haken,et al.  A theoretical model of phase transitions in human hand movements , 2004, Biological Cybernetics.

[42]  J. Zbilut,et al.  Recurrence Quantification Analysis of Nonlinear Dynamical Systems , 2004 .

[43]  G. Lintern Dynamic patterns: The self-organization of brain and behavior , 1997, Complex..

[44]  Linda B. Smith,et al.  A Dynamic systems approach to the development of cognition and action , 1994 .

[45]  Charles Wallis Computation and cognition , 2003, J. Exp. Theor. Artif. Intell..