√2 Subdivision for quadrilateral meshes

This paper presents a $\sqrt2$subdivision scheme for quadrilateral meshes that can be regarded as an extension of a 4-8 subdivision with new subdivision rules and improved capability and performance. The proposed scheme adopts a so-called $\sqrt2$split operator to refine a control mesh such that the face number of the refined mesh generally equals the edge number and is thus about twice the face number of the coarse mesh. Smooth rules are designed in reference to the 4-8 subdivision, while a new set of weights is developed to balance the flatness of surfaces at vertices of different valences. Compared to the 4-8 subdivision, the presented scheme can be naturally generalized for arbitrary control nets and is more efficient in both space and computing time management. Analysis shows that limit surfaces produced by the scheme are C4 continuous for regular control meshes and G1 continuous at extraordinary vertices.

[1]  Ayman Habib,et al.  Edge and vertex insertion for a class of C1 subdivision surfaces , 1999, Comput. Aided Geom. Des..

[2]  Peter Schröder,et al.  Corrigendum to: 'Composite primal/dual -subdivision schemes': [COMAID 20 (2003) 135-164] , 2003, Comput. Aided Geom. Des..

[3]  Peter Schröder,et al.  A unified framework for primal/dual quadrilateral subdivision schemes , 2001, Comput. Aided Geom. Des..

[4]  HARTMUT PRAUTZSCH,et al.  A G1 and a G2 subdivision Scheme for triangular Nets , 2000, Int. J. Shape Model..

[5]  Hartmut Prautzsch,et al.  A G2-Subdivision Algorithm , 1996, Geometric Modelling.

[6]  Richard F. Riesenfeld,et al.  A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  G. Umlauf Analyzing the Characteristic Map of Triangular Subdivision Schemes , 2000 .

[8]  Leif Kobbelt,et al.  Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology , 1996, Comput. Graph. Forum.

[9]  Hartmut Prautzsch,et al.  Smoothness of subdivision surfaces at extraordinary points , 1998, Adv. Comput. Math..

[10]  Ulf Labsik,et al.  Interpolatory √3‐Subdivision , 2000 .

[11]  Jos Stam,et al.  On subdivision schemes generalizing uniform B-spline surfaces of arbitrary degree , 2001, Comput. Aided Geom. Des..

[12]  J. Peters,et al.  Analysis of Algorithms Generalizing B-Spline Subdivision , 1998 .

[13]  Denis Zorin,et al.  A Method for Analysis of C1 -Continuity of Subdivision Surfaces , 2000, SIAM J. Numer. Anal..

[14]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[15]  Joe Warren,et al.  Subdivision Methods for Geometric Design: A Constructive Approach , 2001 .

[16]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[17]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[18]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .

[19]  D. Zorin Stationary Subdivision and Multiresolution Surface Representations , 1997 .

[20]  A. A. Ball,et al.  Conditions for tangent plane continuity over recursively generated B-spline surfaces , 1988, TOGS.

[21]  Jörg Peters,et al.  The simplest subdivision scheme for smoothing polyhedra , 1997, TOGS.

[22]  Ulrich Reif,et al.  A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..

[23]  D. Zorin,et al.  A unified framework for primal/dual quadrilateral subdivision schemes , 2001 .

[24]  Jos Stam,et al.  A Unified Subdivision Scheme for Polygonal Modeling , 2001, Comput. Graph. Forum.

[25]  Tony DeRose,et al.  Efficient, fair interpolation using Catmull-Clark surfaces , 1993, SIGGRAPH.

[26]  Denis Z orin Smoothness of Stationary Subdivision on Irregular Meshes , 1998 .

[27]  D. Zorin,et al.  4-8 Subdivision , 2001 .

[28]  Hartmut Prautzsch,et al.  Improved triangular subdivision schemes , 1998, Proceedings. Computer Graphics International (Cat. No.98EX149).

[29]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[30]  Peter Schröder,et al.  Rapid evaluation of Catmull-Clark subdivision surfaces , 2002, Web3D '02.