√2 Subdivision for quadrilateral meshes
暂无分享,去创建一个
Hujun Bao | Weiyin Ma | Guiqing Li | H. Bao | Guiqing Li | Weiyin Ma
[1] Ayman Habib,et al. Edge and vertex insertion for a class of C1 subdivision surfaces , 1999, Comput. Aided Geom. Des..
[2] Peter Schröder,et al. Corrigendum to: 'Composite primal/dual -subdivision schemes': [COMAID 20 (2003) 135-164] , 2003, Comput. Aided Geom. Des..
[3] Peter Schröder,et al. A unified framework for primal/dual quadrilateral subdivision schemes , 2001, Comput. Aided Geom. Des..
[4] HARTMUT PRAUTZSCH,et al. A G1 and a G2 subdivision Scheme for triangular Nets , 2000, Int. J. Shape Model..
[5] Hartmut Prautzsch,et al. A G2-Subdivision Algorithm , 1996, Geometric Modelling.
[6] Richard F. Riesenfeld,et al. A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[7] G. Umlauf. Analyzing the Characteristic Map of Triangular Subdivision Schemes , 2000 .
[8] Leif Kobbelt,et al. Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology , 1996, Comput. Graph. Forum.
[9] Hartmut Prautzsch,et al. Smoothness of subdivision surfaces at extraordinary points , 1998, Adv. Comput. Math..
[10] Ulf Labsik,et al. Interpolatory √3‐Subdivision , 2000 .
[11] Jos Stam,et al. On subdivision schemes generalizing uniform B-spline surfaces of arbitrary degree , 2001, Comput. Aided Geom. Des..
[12] J. Peters,et al. Analysis of Algorithms Generalizing B-Spline Subdivision , 1998 .
[13] Denis Zorin,et al. A Method for Analysis of C1 -Continuity of Subdivision Surfaces , 2000, SIAM J. Numer. Anal..
[14] E. Catmull,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[15] Joe Warren,et al. Subdivision Methods for Geometric Design: A Constructive Approach , 2001 .
[16] Jos Stam,et al. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.
[17] N. Dyn,et al. A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.
[18] Malcolm A. Sabin,et al. Behaviour of recursive division surfaces near extraordinary points , 1998 .
[19] D. Zorin. Stationary Subdivision and Multiresolution Surface Representations , 1997 .
[20] A. A. Ball,et al. Conditions for tangent plane continuity over recursively generated B-spline surfaces , 1988, TOGS.
[21] Jörg Peters,et al. The simplest subdivision scheme for smoothing polyhedra , 1997, TOGS.
[22] Ulrich Reif,et al. A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..
[23] D. Zorin,et al. A unified framework for primal/dual quadrilateral subdivision schemes , 2001 .
[24] Jos Stam,et al. A Unified Subdivision Scheme for Polygonal Modeling , 2001, Comput. Graph. Forum.
[25] Tony DeRose,et al. Efficient, fair interpolation using Catmull-Clark surfaces , 1993, SIGGRAPH.
[26] Denis Z orin. Smoothness of Stationary Subdivision on Irregular Meshes , 1998 .
[27] D. Zorin,et al. 4-8 Subdivision , 2001 .
[28] Hartmut Prautzsch,et al. Improved triangular subdivision schemes , 1998, Proceedings. Computer Graphics International (Cat. No.98EX149).
[29] Charles T. Loop,et al. Smooth Subdivision Surfaces Based on Triangles , 1987 .
[30] Peter Schröder,et al. Rapid evaluation of Catmull-Clark subdivision surfaces , 2002, Web3D '02.