Verifying Quantitative Properties of Continuous Probabilistic Real-Time Graphs

VerifyingQuantitativeProp ertiesofContinuousProbabilisticReal-TimeGraphsMartaKwiatkowska1,GethinNormanRob ertoSegala2andJeremySproston1UniversityofBirmingham,BirminghamB152TT,UK2UniversitadeBologna,MuraAuteoZamb oni7,40127ItalyDecemb er16,1998AbstractWeconsideranextensionofprobabilisticreal-timegraphswithcontinuous-timeproba-bilitydistributions,basedonthetimedautomataof[3]augmentedwithdiscreteprobabilitdistributionsin[13].Similarlyto[2],wherenon-determinismisnotconsidered,wemo delrandomdelaysbyprobabilitdistributionswith niteintervalsupp ort.Wemo difythestandardregiongraphconstructionbysub dividingcertainunitintervalstobuilda niterepresentationforcontinuousprobabilisticreal-timegraphs.Byapplyingthealgorithmof[7,13]weobtainamo delcheckingmetho dforsuchsystemsagainstformulaeoftheProba-bilisticTimedComputationTreeLogic(anextensionofTCTL[3]),basedonapproximatingtheprobabilitytowithinaninterval.Ourmetho dimprovesonpreviouslyknowntech-niquesinthatitallowstheveri cationofquantitativeprobabilityb ounds,asopp osedtoonlyqualitative(i.e.withprobability0or1).Keywords:probabilisticandreal-timesystems,mo delchecking,veri cation,mo daltemp orallogics1Intro ductionBackground:Formalmetho dsandtechniquesforthereasoninganalysisofreal-timesystems,suchascommunicationproto cols,digitalcircuitswithuncertaindelaylengths,andmediasynchronizationproto cols,havereceivedmuchattentionrecently.Thiscanb epartlyexplainedbytheadvancesoftheoryautomaticallyverifyingtimedautomataagainstprop ertiesofreal-timetemp orallogic,togetherwiththedevelopmentasso ciatedsoftwareto ols[8,9]andthesuccessfulapplicationofthoseinindustrialcasestudies[12 ].Traditionalapproachestoreal-timesystemsdescrib etheirb ehaviourpurelyintermsofnon-determinism.However,itmayb edesirabletoexpresstherelativelikelihoodofcertainb ehaviouro ccurring.Forexample,wemaywishtomo delasysteminwhichaneventistriggeredafterarandom,continuouslydistributeddelay(uniform,normal,exp onential,etc).Thisnotionisparticularlyimp ortantwhenconsideringenvironmentswithunpredictableb ehaviour,suchascomp onentfailureandcustomerarrivalsinanetwork.Furthermore,emayalsowishtorefertothelikeliho o dofcertaintemp orallogicprop ertiesb eingsatis edbyreal-timesystem,andtohaveamo delcheckingalgorithmforerifyingthetruthoftheseassertions.Supp ortedinpartbyEPSRCgrantsGR/M04617andGR/M13046.1

[1]  Christel Baier,et al.  Symbolic Model Checking for Probabilistic Processes , 1997, ICALP.

[2]  Christel Baier,et al.  Model checking for a probabilistic branching time logic with fairness , 1998, Distributed Computing.

[3]  L. D. Alfaro,et al.  How to specify and verify the long-run average behaviour of probabilistic systems , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[4]  Joost-Pieter Katoen,et al.  A Stochastic Automata Model and its Algebraic Approach , 1997 .

[5]  R. Segala,et al.  Automatic Verification of Real-Time Systems with Discrete Probability Distributions , 1999, ARTS.

[6]  Luca de Alfaro,et al.  Stochastic Transition Systems , 1998, CONCUR.

[7]  E. Clarke,et al.  On the Semantic Foundations of Probabilistic VERUS , 1998 .

[8]  Rajeev Alur,et al.  Model-Checking for Probabilistic Real Time Systems , 1991 .

[9]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[10]  Rajeev Alur,et al.  Model-Checking in Dense Real-time , 1993, Inf. Comput..

[11]  Arne Skou,et al.  Modelling and analysis of a collision avoidance protocol using Spin and Uppaal , 1996, The Spin Verification System.

[12]  Marta Z. Kwiatkowska,et al.  Automatic verification of real-time systems with discrete probability distributions , 1999, Theor. Comput. Sci..

[13]  Stavros Tripakis,et al.  Kronos: A Model-Checking Tool for Real-Time Systems , 1998, CAV.

[14]  Rajeev Alur,et al.  Model-Checking for Probabilistic Real-Time Systems (Extended Abstract) , 1991, ICALP.

[15]  Wang Yi,et al.  New Generation of UPPAAL , 1998 .

[16]  N. S. Barnett,et al.  Private communication , 1969 .

[17]  Dudley,et al.  Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .