Probing the plasmonic near-field of gold nanocrescent antennas.

We present an investigation of the plasmon-induced electromagnetic near-field around gold nanocrescent (NC) antennas which exhibit localized surface plasmon resonances (LSPRs) in the infrared. To probe the near-field behavior, we monitored the LSPR shift of NCs to adsorption of dielectric layers of varying thickness. The experimental results are analyzed using theoretical simulations, and the EM field decay lengths for the NCs are determined. We discuss how the structural properties of NC antennas influence the near-field properties and compare the results with the near-fields of other metal nanostructures. We show that the near-field distribution around NCs depends strongly on the structural parameters of the NC and that its spatial extent can be tuned to large distances (>700 nm) from the nanostructure surface. In addition, we discuss NC antenna structural changes associated with exposure to ethanol and buffer solutions and the impact on LSPR properties.

[1]  Harry A. Atwater The promise of plasmonics. , 2007 .

[2]  K. Lance Kelly,et al.  Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers , 2001 .

[3]  Naomi J. Halas,et al.  Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates , 2008 .

[4]  Gary A. Baker,et al.  Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis , 2005, Analytical and bioanalytical chemistry.

[5]  George C Schatz,et al.  Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition. , 2005, The journal of physical chemistry. B.

[6]  A. Requicha,et al.  Plasmonics—A Route to Nanoscale Optical Devices , 2001 .

[7]  R. Corn,et al.  SPR of ultrathin organic films , 1998 .

[8]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[9]  Rostislav Bukasov,et al.  Highly tunable infrared extinction properties of gold nanocrescents. , 2007, Nano letters.

[10]  M. Kreiter,et al.  Thin Layer Sensing with Multipolar Plasmonic Resonances , 2008 .

[11]  Stefan A. Maier,et al.  Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing , 2004 .

[12]  G. Schatz,et al.  Electromagnetic fields around silver nanoparticles and dimers. , 2004, The Journal of chemical physics.

[13]  Luke P. Lee,et al.  Plasmon tuning and local field enhancement maximization of the nanocrescent , 2008, Nanotechnology.

[14]  Jian Zhang,et al.  Surface-enhanced fluorescence of fluorescein-labeled oligonucleotides capped on silver nanoparticles. , 2005, The journal of physical chemistry. B.

[15]  M. Käll,et al.  Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. , 2007, Nano letters.

[16]  Chad A. Mirkin,et al.  Nanostructures in Biodiagnostics , 2005 .

[17]  Mark L. Brongersma,et al.  Plasmonics: the next chip-scale technology , 2006 .

[18]  Encai Hao,et al.  Synthesis and Optical Properties of Anisotropic Metal Nanoparticles , 2004, Journal of Fluorescence.

[19]  J. Shumaker-Parry,et al.  Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy. , 2009, Analytical chemistry.

[20]  K. Nelson,et al.  Surface Characterization of Mixed Self-Assembled Monolayers Designed for Streptavidin Immobilization , 2001 .

[21]  Quan Cheng,et al.  Nanoscale glassification of gold substrates for surface plasmon resonance analysis of protein toxins with supported lipid membranes. , 2006, Analytical chemistry.

[22]  R. V. Van Duyne,et al.  Detection of a biomarker for Alzheimer's disease from synthetic and clinical samples using a nanoscale optical biosensor. , 2005, Journal of the American Chemical Society.

[23]  M. Kreiter,et al.  Tuning resonances on crescent-shaped noble-metal nanoparticles , 2007 .

[24]  T. Chinowsky,et al.  Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films , 1998 .

[25]  R. V. Van Duyne,et al.  A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. , 2002, Journal of the American Chemical Society.

[26]  Christy L. Haynes,et al.  Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy † , 2003 .

[27]  Prashant K. Jain,et al.  Plasmonic coupling in noble metal nanostructures , 2010 .

[28]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[29]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[30]  George C. Schatz,et al.  Nanoscale Optical Biosensor : Short Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles , 2022 .

[31]  Thomas A. Klar,et al.  Surface-Plasmon Resonances in Single Metallic Nanoparticles , 1998 .

[32]  C. Mirkin,et al.  Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. , 2006, Nano letters.

[33]  Jennifer S. Shumaker-Parry,et al.  Fabrication of Crescent‐Shaped Optical Antennas , 2005 .

[34]  George C. Schatz,et al.  A nanoscale optical biosensor: The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles , 2004 .

[35]  Harry A. Atwater,et al.  Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss , 2002 .

[36]  S Schultz,et al.  Non‐regularly shaped plasmon resonant nanoparticle as localized light source for near‐field microscopy , 2001, Journal of microscopy.

[37]  F. Aussenegg,et al.  Electromagnetic energy transport via linear chains of silver nanoparticles. , 1998, Optics letters.

[38]  J. Pendry,et al.  Plasmonic light-harvesting devices over the whole visible spectrum. , 2010, Nano letters.