Dynamics on K3 Surfaces: Salem Numbers and Siegel Disks

This paper presents the first examples of K3 surface automorphisms \(f : X \rightarrow X\) with Siegel disks (domains on which f acts by an irrational rotation). The set of such examples is countable, and the surface \(X\) must be non-projective to carry a Siegel disk. These automorphisms are synthesized from Salem numbers of degree 22 and trace −1, which play the role of the leading eigenvalue for \(f*|H^2(X)\). The construction uses the Torelli theorem, the Atiyah-Bott fixed-point theorem and results from transcendence theory.

[1]  M. Atiyah,et al.  A Lefschetz Fixed Point Formula for Elliptic Complexes: I , 1967 .

[2]  Séminaire Palaiseau Première classe de Chern et courbure de Ricci : preuve de la conjecture de Calabi : séminaire Palaiseau 1978 , 1978 .

[3]  R. Mañé,et al.  Ergodic Theory and Differentiable Dynamics , 1986 .

[4]  J. Silverman Rational points on K3 surfaces: A new canonical height , 1991 .

[5]  S. Yau On The Ricci Curvature of a Compact Kahler Manifold and the Complex Monge-Ampere Equation, I* , 1978 .

[6]  Séminaire Palaiseau Géométrie des surfaces K3 : modules et périodes : séminaire Palaiseau, octobre 1981-janvier 1982 , 1985 .

[7]  David Fried Word maps, isotopy and entropy , 1986 .

[8]  R. Tennant Algebra , 1941, Nature.

[9]  Barry Mazur,et al.  The Topology of Rational Points , 1992, Exp. Math..

[10]  N I Fel'dman,et al.  IMPROVED ESTIMATE FOR A LINEAR FORM OF THE LOGARITHMS OF ALGEBRAIC NUMBERS , 1968 .

[11]  M. Gromov,et al.  L'enseignement Mathématique on the Entropy of Holomorphic Maps , 2022 .

[12]  M. Atiyah,et al.  A Lefschetz Fixed Point Formula for Elliptic Complexes: II. Applications , 1968 .

[13]  Chris Smyth Salem numbers of negative trace , 2000, Math. Comput..

[14]  Robert S. MacKay,et al.  Renormalisation in Area-Preserving Maps , 1993 .

[15]  P. Cohn Symmetric Bilinear Forms , 1973 .

[16]  R. Salem Algebraic numbers and Fourier analysis , 1963 .

[17]  S. Friedland Entropy of Algebraic Maps , 2020 .

[18]  J. Milnor,et al.  Dynamics in One Complex Variable: Introductory Lectures , 2000 .

[19]  Curtis T. McMullen,et al.  Automorphisms of even unimodular lattices and unramified Salem numbers , 2002 .

[20]  Curtis T. McMullen,et al.  Complex Dynamics and Renormalization , 1994 .

[21]  Richard J. Brown Anosov mapping class actions on the $SU(2)$-representation variety of a punctured torus , 1998, Ergodic Theory and Dynamical Systems.

[22]  Y. Yomdin Volume growth and entropy , 1987 .

[23]  W. Barth Compact complex surfaces. , 2003 .

[24]  Jean-Pierre Serre A Course in Arithmetic , 1973 .

[25]  Serge Cantat Dynamique des automorphismes des surfaces projectives complexes , 1999 .