The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line

[1]  A. Burgard,et al.  Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. , 2011, Nature chemical biology.

[2]  Stephen R Quake,et al.  Whole-genome molecular haplotyping of single cells , 2011, Nature Biotechnology.

[3]  G. Campadelli-Fiume,et al.  αVβ3-integrin routes herpes simplex virus to an entry pathway dependent on cholesterol-rich lipid rafts and dynamin2 , 2010, Proceedings of the National Academy of Sciences.

[4]  Z. Shriver,et al.  Chinese hamster ovary cells can produce galactose-α-1,3-galactose antigens on proteins , 2010, Nature Biotechnology.

[5]  Gary Walsh,et al.  Biopharmaceutical benchmarks 2010 , 2010, Nature Biotechnology.

[6]  A. Varki,et al.  Implications of the presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins , 2010, Nature Biotechnology.

[7]  S. Koren,et al.  Assembly algorithms for next-generation sequencing data. , 2010, Genomics.

[8]  DavidE . Goldberg,et al.  Differences in N-glycan structures found on recombinant IgA1 and IgA2 produced in murine myeloma and CHO cell lines , 2010, mAbs.

[9]  Niki S. C. Wong,et al.  Engineering mammalian cells in bioprocessing – current achievements and future perspectives , 2010, Biotechnology and applied biochemistry.

[10]  Huanming Yang,et al.  De novo assembly of human genomes with massively parallel short read sequencing. , 2010, Genome research.

[11]  Aaron R. Quinlan,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[12]  T. Munro,et al.  Intraclonal Protein Expression Heterogeneity in Recombinant CHO Cells , 2009, PloS one.

[13]  Jong Myoung Park,et al.  Constraints-based genome-scale metabolic simulation for systems metabolic engineering. , 2009, Biotechnology advances.

[14]  Z. Li,et al.  Optimal and consistent protein glycosylation in mammalian cell culture. , 2009, Glycobiology.

[15]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[16]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[17]  Amy S. Espeseth,et al.  Host Cell Factors in HIV Replication: Meta-Analysis of Genome-Wide Studies , 2009, PLoS pathogens.

[18]  T. Wurch,et al.  Trends in glycosylation, glycoanalysis and glycoengineering of therapeutic antibodies and Fc-fusion proteins. , 2008, Current pharmaceutical biotechnology.

[19]  Adam M. Feist,et al.  The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli , 2008, Nature Biotechnology.

[20]  Jian-hua Zhou,et al.  Integrin activation and viral infection , 2008, Virologica Sinica.

[21]  U. Galili,et al.  The Galα1,3Galβ1,4GlcNAc-R (α-Gal) epitope: A carbohydrate of unique evolution and clinical relevance , 2008 .

[22]  U. Galili,et al.  The Galalpha1,3Galbeta1,4GlcNAc-R (alpha-Gal) epitope: a carbohydrate of unique evolution and clinical relevance. , 2008, Biochimica et biophysica acta.

[23]  Salim Charaniya,et al.  In pursuit of a super producer-alternative paths to high producing recombinant mammalian cells. , 2007, Current opinion in biotechnology.

[24]  Akira Okazaki,et al.  Establishment of a GDP-mannose 4,6-dehydratase (GMD) knockout host cell line: a new strategy for generating completely non-fucosylated recombinant therapeutics. , 2007, Journal of biotechnology.

[25]  Aya Kojima,et al.  fRNAdb: a platform for mining/annotating functional RNA candidates from non-coding RNA sequences , 2006, Nucleic Acids Res..

[26]  Rodney Smith Cell Technology for Cell Products , 2007 .

[27]  J. Beckmann,et al.  Stability and Cytogenetic Characterization of Recombinant CHO Cell Lines Established by Microinjection and Calcium Phosphate Transfection , 2007 .

[28]  G. Weinstock,et al.  Creating a honey bee consensus gene set , 2007, Genome Biology.

[29]  Jerzy Jurka,et al.  Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor , 2006, BMC Bioinformatics.

[30]  S. Iida,et al.  Non-fucosylated therapeutic antibodies as next-generation therapeutic antibodies , 2006, Expert opinion on biological therapy.

[31]  Gary Walsh,et al.  Post-translational modifications in the context of therapeutic proteins , 2006, Nature Biotechnology.

[32]  Naoko Yamane-Ohnuki,et al.  Fucose removal from complex-type oligosaccharide enhances the antibody-dependent cellular cytotoxicity of single-gene-encoded bispecific antibody comprising of two single-chain antibodies linked to the antibody constant region. , 2006, Journal of biochemistry.

[33]  Feng Chen,et al.  OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups , 2005, Nucleic Acids Res..

[34]  J. Li,et al.  Study on the relationship between level of CD58 expression in peripheral blood mononuclear cell and severity of HBV infection. , 2005, Chinese medical journal.

[35]  S. Elliott,et al.  Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. , 2005, Journal of pharmaceutical sciences.

[36]  F. Rixon,et al.  Herpes Simplex Virus Type 1 Strain HSV1716 Grown in Baby Hamster Kidney Cells Has Altered Tropism for Nonpermissive Chinese Hamster Ovary Cells Compared to HSV1716 Grown in Vero Cells , 2005, Journal of Virology.

[37]  K. Tsumoto,et al.  Herpes simplex virus targeting to the EGF receptor by a gD-specific soluble bridging molecule. , 2005, Molecular therapy : the journal of the American Society of Gene Therapy.

[38]  D. Sawitzky,et al.  Entry of pseudorabies virus into CHO cells is blocked at the level of penetration , 2005, Archives of Virology.

[39]  F. Wurm Production of recombinant protein therapeutics in cultivated mammalian cells , 2004, Nature Biotechnology.

[40]  J. Mullins,et al.  Insights from the rat genome sequence , 2004, Genome Biology.

[41]  Lisa M. D'Souza,et al.  Genome sequence of the Brown Norway rat yields insights into mammalian evolution , 2004, Nature.

[42]  L. Deaven,et al.  The chromosomes of CHO, an aneuploid Chinese hamster cell line: G-band, C-band, and autoradiographic analyses , 2004, Chromosoma.

[43]  Colin N. Dewey,et al.  Initial sequencing and comparative analysis of the mouse genome. , 2002 .

[44]  Huub Schellekens,et al.  Immunogenicity of therapeutic proteins: clinical implications and future prospects. , 2002, Clinical therapeutics.

[45]  Mouse Genome Sequencing Consortium Initial sequencing and comparative analysis of the mouse genome , 2002, Nature.

[46]  M. Chilosi,et al.  Heparan Sulfate Glycosaminoglycans Are Receptors Sufficient To Mediate the Initial Binding of Adenovirus Types 2 and 5 , 2001, Journal of Virology.

[47]  M. Giacca,et al.  Internalization of HIV-1 Tat Requires Cell Surface Heparan Sulfate Proteoglycans* , 2001, The Journal of Biological Chemistry.

[48]  Gary Walsh,et al.  Biopharmaceutical benchmarks , 2000, Nature Biotechnology.

[49]  R. Eisenberg,et al.  A Novel Role for 3-O-Sulfated Heparan Sulfate in Herpes Simplex Virus 1 Entry , 1999, Cell.

[50]  E. Nickerson,et al.  A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[51]  D. Thorley-Lawson,et al.  CD48 Binds to Heparan Sulfate on the Surface of Epithelial Cells* , 1998, The Journal of Biological Chemistry.

[52]  K. Kimata,et al.  Molecular Cloning and Expression of Chinese Hamster Ovary Cell Heparan-sulfate 2-Sulfotransferase* , 1997, The Journal of Biological Chemistry.

[53]  A. Shilatifard,et al.  Expression of human H-type alpha1,2-fucosyltransferase encoding for blood group H(O) antigen in Chinese hamster ovary cells. Evidence for preferential fucosylation and truncation of polylactosamine sequences. , 1997, The Journal of biological chemistry.

[54]  J. Esko,et al.  Microbial adherence to and invasion through proteoglycans , 1997, Infection and immunity.

[55]  Nigel Jenkins,et al.  Getting the glycosylation right: Implications for the biotechnology industry , 1996, Nature Biotechnology.

[56]  Masaki Saito,et al.  Purification and Characterization of Heparan Sulfate 2-Sulfotransferase from Cultured Chinese Hamster Ovary Cells (*) , 1996, The Journal of Biological Chemistry.

[57]  K. Kimata,et al.  Purification and Characterization of Heparan Sulfate 6-Sulfotransferase from the Culture Medium of Chinese Hamster Ovary Cells (*) , 1995, The Journal of Biological Chemistry.

[58]  J. Esko,et al.  Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans , 1992, The Journal of cell biology.

[59]  D. Spehner,et al.  A cowpox virus gene required for multiplication in Chinese hamster ovary cells , 1988, Journal of virology.

[60]  E. Hall,et al.  The nature of biotechnology. , 1988, Journal of biomedical engineering.

[61]  P. Stanley,et al.  A dominant mutation to ricin resistance in Chinese hamster ovary cells induces UDP-GlcNAc:glycopeptide beta-4-N-acetylglucosaminyltransferase III activity. , 1984, The Journal of biological chemistry.

[62]  G. Gregoriadis,et al.  The role of sialic acid in determining the survival of glycoproteins in the circulation. , 1971, The Journal of biological chemistry.