Finite and infinite pseudorandom binary words

We present a notion of pseudorandomness for finite binary words based on the measure of the well distribution in arithmetic progressions and of the correlations. We give several examples and we focuss our interest on two arithmetical constructions connected to the Legendre symbol and the Liouville function.

[1]  W. Sierpinski,et al.  Sur certaines hypothèses concernant les nombres premiers , 1958 .

[2]  L. J. Mordell THE RIEMANN HYPOTHESIS AND HILBERT'S TENTH PROBLEM , 1966 .

[3]  Ivan Niven,et al.  On the definition of normal numbers , 1951 .

[4]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[5]  András Sárközy,et al.  On Finite Pseudorandom Binary Sequences: II. The Champernowne, Rudin–Shapiro, and Thue–Morse Sequences, A Further Construction , 1998 .

[6]  P. D. T. A. Elliott,et al.  On the correlation of multiplicative and the sum of additive arithmetic functions , 1994 .

[7]  András Sárközy,et al.  On finite pseudorandom binary sequences I: Measure of pseudorandomness, the Legendre symbol , 1997 .

[8]  I. Vinogradov,et al.  Elements of number theory , 1954 .

[9]  H. Shapiro,et al.  Extremal problems for polynomials and power series , 1951 .

[10]  G. Halász,et al.  Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen , 1968 .

[11]  J. W. S. Cassels On a paper of Niven and Zuckerman. , 1952 .

[12]  Adolf Hildebrand Multiplicative functions at consecutive integers , 1986 .

[13]  P. Elliott Probabilistic number theory , 1979 .

[14]  A. Schinzel,et al.  Remarks on the paper "Sur certaines hypothèses concernant les nombres premiers" , 1961 .

[15]  Walter Rudin,et al.  Some theorems on Fourier coefficients , 1959 .

[16]  Lee-Ann C. Hayek,et al.  Table of Random Numbers , 1994 .

[17]  A. Harles Sieve Methods , 2001 .

[18]  M. Queffélec Substitution dynamical systems, spectral analysis , 1987 .

[19]  András Sárközy,et al.  On finite pseudorandom binary sequences III: The Liouville function, I , 1999 .

[20]  András Sárközy,et al.  On finite pseudorandom binary sequences VII: The measures of pseudorandomness , 2002 .

[21]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[22]  D. Champernowne The Construction of Decimals Normal in the Scale of Ten , 1933 .

[23]  H. Halberstam,et al.  Probabilistic Number Theory I and II , 1982 .