"Systematic"

A systematic study of thermal silver ion exchange used for the fabrication of optical channel waveguides is reported in a single-alkali glass. The diffusion equilibrium and diffusion dynamics are experimentally studied, and the concentration-dependent diffusion coefficients are determined. The relationship between the fabrication conditions, i.e., time, temperature, and melt concentration, and the induced waveguide refractive index profile is established. It is demonstrated that the diffusion equation can be solved, without use of any free parameters, to predict the refractive index profiles of both planar and channel waveguides. A 1.6 cm diameter integrated optic ring resonator, with a propagation loss of 0.1 dB/cm, is fabricated in a glass by thermal silver ion exchange. The induced refractive index profile is related to the optical characteristics of the functional device.

[1]  Raymond K. Kostuk,et al.  Measurement and modeling of ion-exchange parameters for IOG-10 glass , 2003 .

[2]  R. V. Ramaswamy,et al.  Recent advances in ion-exchanged optical waveguides and components , 1988 .

[3]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .

[4]  G. Stewart,et al.  Fabrication of ion-exchanged optical waveguides from dilute silver nitrate melts , 1978 .

[5]  Jean-Emmanuel Broquin,et al.  Ion-exchanged integrated devices , 2001, SPIE OPTO.

[6]  M. Rothhardt,et al.  Application of the Refracted Near-Field Technique to Multimode Planar and Channel Waveguides in Glass , 1986 .

[7]  T. Findakly,et al.  Glass Waveguides By Ion Exchange: A Review , 1985 .

[8]  J W Lit,et al.  Full modeling of field-assisted ion exchange for graded index buried channel optical waveguides. , 1990, Applied optics.

[9]  H. Garfinkel Ion-exchange equilibriums between glass and molten salts , 1968 .

[10]  D. Scarano,et al.  Compositional and stress-optical effects in glass waveguides: Comparison between KNa and AgNa ion exchange , 1990 .

[11]  E. Voges,et al.  Field-induced index profiles of multimode ion-exchanged strip waveguides , 1982 .

[12]  C. Wilkinson,et al.  Integrated optical waveguiding structures made by silver ion-exchange in glass. 1: The propagation characteristics of stripe ion-exchanged waveguides; a theoretical and experimental investigation. , 1983, Applied optics.

[14]  Ramu V. Ramaswamy,et al.  Planar, buried, ion-exchanged glass waveguides: Diffusion characteristics , 1986 .

[15]  R. Doremus Exchange and Diffusion of Ions in Glass , 1964 .

[16]  T. Anderson,et al.  Influence of Ag/sup +/-Na/sup +/ ion-exchange equilibrium on waveguide index profiles , 1988 .

[17]  R. Laity Fused Salt Concentration Cells with Transference. Activity Coefficients in the System Silver Nitrate-Sodium Nitrate1 , 1957 .

[18]  Hiroshi Nakagome,et al.  Optical waveguide formed by electrically induced migration of ions in glass plates , 1972 .

[19]  R. Wood Introduction to glass integrated optics , 1993 .

[20]  K. Okamoto Fundamentals of Optical Waveguides , 2000 .

[21]  L. Ross,et al.  Integrated optical components in substrate glasses , 1989 .

[22]  C. P. Cristescu,et al.  Local electric fields in optical glasses during field-assisted ionic exchanges , 2000, Other Conferences.

[23]  G. H. Frischat,et al.  Transport mechanisms in alkali silicate glasses , 1985 .

[24]  Torsten Poszner,et al.  Stripe waveguides with matched refractive index profiles fabricated by ion exchange in glass , 1991 .

[25]  Igor G. Voitenko,et al.  Mode interference pattern in ion-exchanged channel waveguides , 1993, Other Conferences.

[26]  H. Wakabayashi The relationship between kinetic and thermodynamic properties in mixed alkali glass , 1996 .

[27]  G. Chartier,et al.  Graded-index surface or buried waveguides by ion exchange in glass. , 1980, Applied optics.

[28]  D. Allan,et al.  Ion exchange equilibria between glass and molten salts , 2003 .

[29]  Ramu V. Ramaswamy,et al.  Ion-exchanged glass waveguides: a review , 1988 .

[30]  R. Terai,et al.  Haven ratio in mixed alkali glass , 1988 .

[31]  R. Oven,et al.  The influence of the pseudo-mixed-alkali effect on the field-assisted diffusion of silver ions into glass for optical waveguides , 1995 .

[32]  B. Messerschmidt,et al.  Ionic mobility in an ion exchanged silver—sodium boroaluminosilicate glass for micro-optics applications , 1997 .

[33]  R. Alferness,et al.  Guided-wave optoelectronics , 1988 .

[34]  Michel Levy,et al.  Modeling ion exchange in glass with concentration-dependent diffusion coefficients and mobilities , 1996 .

[35]  R Araujo,et al.  Colorless glasses containing ion-exchanged silver. , 1992, Applied optics.

[36]  D. Day Mixed alkali glasses — Their properties and uses , 1976 .

[37]  J L Coutaz,et al.  Optical waveguides fabricated by ion exchange in high-index commercial glasses. , 1992, Applied optics.

[38]  C. A. Millar,et al.  Planar optical waveguides formed by silver-ion migration in glass , 1977 .

[39]  Ari Tervonen,et al.  Experimental analysis of Ag+‐Na+ exchange in glass with Ag film ion sources for planar optical waveguide fabrication , 1988 .

[40]  J. Howell,et al.  Diffusion in Solids , 1984, Materials Science Forum.

[41]  S. Poling,et al.  Structural factors in silver-induced relaxation in aluminosilicate glasses , 2001 .

[42]  R. Ramaswamy,et al.  Silver ion‐exchanged, buried, glass optical waveguides with symmetric index profile , 1986 .

[43]  A. Brandenburg,et al.  Stress in ion-exchanged glass waveguides , 1986 .

[44]  C. Kaps,et al.  Sodium/silver ion exchange between a non-bridging oxygen-free boroaluminosilicate glass and nitrate melts , 1991 .